1,835
Views
0
CrossRef citations to date
0
Altmetric
Review

Encoded C4 homologue enzymes genes function under abiotic stresses in C3 plant

, , , &
Article: 2115634 | Received 05 May 2022, Accepted 16 Aug 2022, Published online: 14 Sep 2022

References

  • Osmond CB, Grace SC. Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot. 1995;46:1351–7. doi:10.1093/jxb/46.special_issue.1351.
  • Hatch MD. C 4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et BiophyActa. 1987;895:81–106. doi:10.1016/S0304-4173(87)80009-5.
  • Leegood RC. C 4 photosynthesis: principles of CO 2 concentration and prospects for its introduction into C 3 plants. J Exp Bot. 2002;53:581–590. doi:10.1093/jexbot/53.369.581.
  • Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004;16:1667–1678. doi:10.1105/tpc.021345.
  • Gowik U, Westhoff P. The path from C3 to C4 photosynthesis. Plant Physiol. 2011;155:56–63. doi:10.1104/pp.110.165308.
  • Sage RF. The evolution of C4 photosynthesis. New Phytol. 2004;161:341–370. doi:10.1111/j.1469-8137.2004.00974.x.
  • Ueno O, Kawano Y, Wakayama M, Tomoshiro T. Leaf vascular systems in C3 and C4 grasses: a two-dimensional analysis. Ann Bot. 2006;97:611–621. doi:10.1093/aob/mcl010.
  • Julian MH, Sarah C. The regulation of gene expression required for C4 photosynthesis. Annu Rev Plant Biol. 2010;61:181–207. doi:10.1146/annurev-arplant-042809-112238.
  • Athena DM, Nancy GD. Vein patterning and evolution in C4 plants. Botany. 2010;88:8775–8786.
  • Gregory AL, Hurley BA, Tran HT, Valentine AJ, She YM, Knowles VL, Plaxton WC. In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved ArabidopHIsis thaliana. Biochem J. 2009;420(1):57–65. doi:10.1042/BJ20082397.
  • Pascal-Antoine C, Osborne CP. New phytologist. Evol Ecol C4plants. 2014;204:765–781.
  • Zhang Y, Giuliani R, Zhang Y, Zhang Y, Araujo WL, Wang B, Liu P, Sun Q, Cousins A, Edwards G, et al. Characterization of maize leaf pyruvate orthophosphate dikinase using high throughput sequencing. J Integr Plant Biol. 2019;60(8):670–690. doi:10.1111/jipb.12656.
  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science. 2005;309:600–603. doi:10.1126/science.1110063.
  • Babayev H, Mehvaliyeva U, Aliyeva M, Feyziyev Y, Guliyev N. The study of NAD-malic enzyme in Amaranthus cruentus L. under drought. Plant Physiol Bioch. 2014;81:84–89. doi:10.1016/j.plaphy.2013.12.022.
  • Sage RF, Christin PA, Edwards EJ. The C(4) plant lineages of planet Earth. J Exp Bot. 2011;62:3155–3169.
  • Schulze ED, Ellis R, Schulze W, Trimborn P, Ziegler H. Diversity, metabolic type and 13C carbon isotope ratios in the flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia. 1996;106:352–369. doi:10.1007/BF00334563.
  • Gowik U, Bräutigam A, Weber KL, Weber APM, Westhof P. Evolution of C4 photosynthesis in the genus flaveria: how many and which genes does it take to make C4. Plant Cell. 2011;23:2087–2105. doi:10.1105/tpc.111.086264.
  • Maria E, Florence RD, Furbank RT, Susanne von C. On the road to C4rice: advances and perspectives. Plant J. 2019;101:940–950. doi:10.1111/tpj.14562.
  • Leegood RC, Lea PJ, Adcock MD, Haüsler RE. The regulation and control of photorespiration. Exp Biol. 1995;46:1397.
  • DiMario RJ, Clayton H, Mukherjee A, Ludwig M, Moroney JV. Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol Plant. 2017;10:30–46. doi:10.1016/j.molp.2016.09.001.
  • Zhang X, Pu P, Tang Y, Zhang LX, Lv JY. C4 photosynthetic enzymes play a key role in wheat spike bracts primary carbon metabolism response under water deficit. Plant Physiol Bioch. 2019;142:163–172. doi:10.1016/j.plaphy.2019.06.013.
  • Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, Samuelsson G. A novel alpha-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J. 1998;17(5):1208–1216. doi:10.1093/emboj/17.5.1208.
  • Moroney JV, Barelett SG, Samuelsson G. Carbonic anhydrases in plants and aluge. Plant Cell Environ. 2001;24(2):141–153. doi:10.1111/j.1365-3040.2001.00669.x.
  • Brinkman R, Margaria R, Meldrum N, Roughton F. The CO2 catalyst present in blood. J Physiol. 1932;75:3–4.
  • Meldrum N, Roughton F. Some properties of carbonic anhydrase, the CO2 enzyme present in blood. J Physiol. 1932;75:15.
  • Alber BE, Ferry JG. A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci USA. 1994;91(15):6909–6913. doi:10.1073/pnas.91.15.6909.
  • Price G, Howitt S, Harrison K, Badger M. Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function. J.Bacteriol. 1993;175:2871–2879. doi:10.1128/jb.175.10.2871-2879.1993.
  • DiMarioa RJ, Machingurab MC, Waldropb GL, Moroney JV. The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci. 2018;268:11–17. doi:10.1016/j.plantsci.2017.12.002.
  • Hu HH, Boisson-Dernier A, Israelsson-Nordström Maik Böhmer M, Xue SW, Ries A, Godoski J, Kuhn JM, Schroeder JI. Carbonic anhydrases are upstream regulators in guard cells of CO2-controlled stomatal movement. Nat Cell Biol. 2010;12:87–93. doi:10.1038/ncb2009.
  • Kolbe AR, Brutnell TP, Cousins AB, Studerc AJ. Carbonic anhydrase mutants in zea mays have altered stomatal responses to environmental signals. Plant Physiol. 2018;177:980–989. doi:10.1104/pp.18.00176.
  • Kravchik M, Bernstein N. Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction. BMC Genom. 2013;14:24. doi:10.1186/1471-2164-14-24.
  • David HS, Duroy AN, Daniel C, Olga Del P, Gregory BM, Daniel FK. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci. 2002;99:1640–11645.
  • Wang YQ, Feechan A, Yun BW, Shafiei R, Hofmann A, Taylor P, Xue P, Yang FQ, Xie ZS, Pallas JA, et al. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem. 2009;284:2131–2137. doi:10.1074/jbc.M806782200.
  • Zhou Y, Vroegop-Vos IA, Van Dijken AJH, Van der DD, Zipfel C, Pieterse CMJ, Van Wees SCM. Carbonic anhydrases CA1 and CA4 function in atmospheric CO2-modulated disease resistance. Planta. 2020;251:75. doi:10.1007/s00425-020-03370-w.
  • Wang D, Portis ARJ, Moose SP, Long SP. Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus X giganteus. Plant Physiol. 2008;148:557–567. doi:10.1104/pp.108.120709.
  • DiMario RJ, Quebedeaux JC, Longstreth DJ, Dassanayake M, Hartman MM, Moroney JV. The cytoplasmic carbonic anhydrases betaCA2 and betaCA4 are required for optimal plant growth at low CO2. Plant Physiol. 2016;171(1):280–293. doi:10.1104/pp.15.01990.
  • Villarreal F, Martin V, Colaneri A, Gonzalez-Schain N, Perales M, Martin M, Lombardo C, Braun HP, Bartoli C, Zabaleta E. Ectopic expression of mitochondrial gamma carbonic anhydrase 2 causes male sterility by anther indehiscence. Plant Mol Biol. 2009;70(4):471–485. doi:10.1007/s11103-009-9484-z.
  • Collins RM, Afzal M, Ward DA, Prescott MC, Sait SM, Rees HH, Tomsett AB. Differential proteomic analysis of Arabidopsis thaliana genotypes exhibiting resistance or susceptibility to the insect herbivore, Plutella xylostella. PLoS One. 2010;5:10103. doi:10.1371/journal.pone.0010103.
  • Yu S, Zhang X, Guan Q, Takano T, Liu S. Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnol Lett. 2007;29:89–94. doi:10.1007/s10529-006-9199-z.
  • Chollet R, Vidal J, O’Leary M. Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:273–298. doi:10.1146/annurev.arplant.47.1.273.
  • O’Leary B, Fedosejevs ET, Hill AT, Bettridge J, Park J, Rao SK, Leach CA, Plaxton WC. Tissue-specific expression and post- translational modifications of plant- and bacterial- type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L. J Exp Bot. 2011;62(15):5485–5495. doi:10.1093/jxb/err225.
  • Audtho M, Valaitis AP, Alzate O, Dean DH. Production of chymotrypsin-resistant Bacillus thuringiensis Cry2 Aal-endotoxin by protein engineering. Appl Environ Microbiol. 1999;65:4601–4605. doi:10.1128/AEM.65.10.4601-4605.1999.
  • O’Leary B, Rao SK, Kim J, Plaxton WC. Bacterial-type Phosphoenolpyruvate Carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants. J Biol Chem 284. 2009;284:24797–24805. doi:10.1074/jbc.M109.022863.
  • Park J, Khuu N, Howard ASM, Mullen RT, Plaxton WC. Bacterial- and plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact in vivo and associate with the surface of mitochondria. Plant J. 2012;71:251–262. doi:10.1111/j.1365-313X.2012.04985.x.
  • Zhang X, Wei X, Ali MM, Rizwan HM, Li B, Li H, Jia K, Yang X, Ma S, Li S, et al. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. flavicarpa) passion fruits. Int J Mol Sci. 2021;22(11):5765. doi:10.3390/ijms22115765.
  • Alonso-Cantabrana H, Cousins AB, Danila F, Ryan T, Sharwoo RE, Caemmerer S, Furbank RT. Diffusion of CO2 across the mesophyll-bundle sheath cell interface in a C4 plant with genetically reduced PEP carboxylase activity. Plant Physiol. 2018;178:72–81. doi:10.1104/pp.18.00618.
  • Bläsing OE, Ernst K, Streubel M, Westhoff P, Svensson P. The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia - implications for the evolution of C4 photosynthesis. Planta. 2002;215:448–456. doi:10.1007/s00425-002-0757-x.
  • Cheng G, Wang L, Lan H. Cloning of PEPC- 1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses. Enzyme Microb Technol. 2016;83:57–67. doi:10.1016/j.enzmictec.2015.11.006.
  • Cousins AB, Baroli I, Badger MR, Ivakov A, Lea PJ, Leegood RC, von Caemmerer S. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol. 2007;145(3):1006–1017. doi:10.1104/pp.107.103390.
  • Nomura M, Mai HT, Fujii M, Hata S, Izui K, Tajima S. Phosphoenolpyruvate carboxylase plays a crucial role in limiting nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol. 2006;47(5):613–621. doi:10.1093/pcp/pcj028.
  • Shi J, Yi K, Liu Y, Xie L, Zhou Z, Chen Y, Hu Z, Zheng T, Liu R, Chen Y, et al. Phosphoenolpyruvate carboxylase in Arabidopsis leaves plays a crucial role in carbon and nitrogen metabolism. Plant Physiol. 2015;167(3):671–681. doi:10.1104/pp.114.254474.
  • Tian QL, Shi DJ, Jia XH, Mi HL, Huang XW, He PM. Recombinant expression and functional analysis of a Chlamydomonas reinhardtii bacterial-type phosphoenolpyruvate carboxylase gene fragment. Biotechnol Lett. 2014;36:821–827. doi:10.1007/s10529-013-1418-9.
  • Zhou BY, Ding ZS, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC in rice. Acta Agron Sin. 2011;37:112.
  • Crawford JD, Cousins AB. Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance. J Exp Bot. 2022;73(3):927–938. doi:10.1093/jxb/erab464.
  • Xu B, Chen Y, Wang H, Zhao W, Zhou Z. Elevated temperature and waterlogging decrease cottonseed quality by altering the accumulation and distribution of carbohydrates, oil and protein. Physiol Plant. 2021;171(1):108–124. doi:10.1111/ppl.13213.
  • Li X, Zhang C, Dai C, Zhou J, Ren C, Zhang J. Phosphoenolpyruvate carboxylase regulation in C4-PEPC-expressing transgenic rice during early responses to drought stress. Physiol Plant. 2017;159(2):178–200. doi:10.1111/ppl.12506.
  • Qi X, Xu W, Zhang J, Guo R, Zhao M, Hu L, Wang H, Dong H, Li Y. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma. 2017;254(2):1017–1030. doi:10.1007/s00709-016-1010-y.
  • Masumoto C, Miyazawa S, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA. 2010;107(11):5226–5231. doi:10.1073/pnas.0913127107.
  • Tang Y, Li X, Lu W, Wei X, Zhang Q, Lv C, Song N. Enhanced photorespiration in transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase gene contributes to alleviating low nitrogen stress. Plant Physiol Biochem. 2018;130:577–588. doi:10.1016/j.plaphy.2018.08.013.
  • Aoyagi K, Bassham J. Pyruvate orthophosphate dikinase mRNA organ specificity in wheat and maize. Plant Physiol. 1984;76(1):278–280. doi:10.1104/pp.76.1.278.
  • Sheen JY, Bogorad L. Differential expression of C4 pathway genes in mesophyll and bundle sheath cells of greening maize leaves. J Biol Chem. 1987;262:11726–11730. doi:10.1016/S0021-9258(18)60871-3.
  • Sheen J. Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell. 1991;3:225–245. doi:10.1105/tpc.3.3.225.
  • Kang HG, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J. 2005;42:901–911. doi:10.1111/j.1365-313X.2005.02423.x.
  • Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie AR, Hibberd JM. Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant J. 2010;62:641–652. doi:10.1111/j.1365-313X.2010.04179.x.
  • Hennen-Bierwagen T, Myers A. Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm. Proc Natl Acad Sci USA. 2018;115:E24–E33.
  • Manicacci D, Camus-Kulandaivelu L, Fourmann M, Arar C, Barrault S, Rousselet A, Feminias N, Consoli L, Francès L, Méchin V, et al. Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize. Plant Physiol. 2009;150(1):506–520. doi:10.1104/pp.108.131888.
  • Méchin V, Thévenot C, Le Guilloux M, Prioul JL, Damerval C. Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiol. 2007;143(3):1203–1219. doi:10.1104/pp.106.092148.
  • Lappe RR, Baier JW, Boehlein SK, Huffman R, Lin Q, Wattebled F, Settles AM, Hannah LC, Borisjuk L, Rolletschek H, et al. Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm. Proc Natl Acad Sci USA. 2018;115(1):E24–E33. doi:10.1073/pnas.1715668115.
  • Parsley K, Hibberd JM. The Arabidopsis PPDK gene is transcribed from two promoters to produce differentially expressed transcripts responsible for cytosolic and plastidic proteins. Plant Mol Biol. 2006;62(3):339–349. doi:10.1007/s11103-006-9023-0.
  • Jiang B, Ouyang N, Sun X, Tan Y, Sun Z, Yu D, Xin S, Duan M, Yuan D. Under drought stress, the protective capability of photosynthetic apparatus of transgenic PEPC+PPDK rice was enhanced. MPB. 2018;16:798–806.
  • Winter K, Foster JG, Schmitt MR, Edwards GE. Activity and quantity of ribulose bisphosphate carboxylase and phosphoenolpyruvate carboxylase protein in two Crassulacean acid metabolism plants in relation to leaf age, nitrogen nutrition, and point in time during a day/night cycle. Planta. 1982;154:309–317. doi:10.1007/BF00393908.
  • Sonawane BV, Sharwood RE, Whitney S, Ghannoum O. Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses. J Exp Bot. 2018;69(12):3053–3068. doi:10.1093/jxb/ery129.
  • Chen Q, Wang B, Ding H, Zhang J, Li S. The role of NADP-malic enzyme in plants under stress. Plant Sci. 2019;281:206–212. doi:10.1016/j.plantsci.2019.01.010.
  • Selinski J, König N, Wellmeyer B, Hanke GT, Linke V, Neuhaus HE, Scheibe R. The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds. Mol Plant. 2014;7(1):170–186. doi:10.1093/mp/sst151.
  • Taniguchi M, Miyake H. Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. Curr Opin Plant Biol. 2012;15(3):252–260. doi:10.1016/j.pbi.2012.01.014.
  • Barbara HN, Sławomir D, Renata M. Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol Bioch. 2015;94:225-34.
  • Mnasri M, Ghabriche R, Fourati E, Zaier H, Sabally K, Barrington S, Lutts S, Abdelly C, Ghnaya T. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes. Front Plant Sci. 2015;6:156. doi:10.3389/fpls.2015.00156.
  • Deepika K, Sasmita M, Baishnab CT. Overexpression of plastidic maize NADP-malatedehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress. Protoplasma. 2018;255:1779–1809.
  • Wu X, Han Y, Zhu X, Shah A, Wang W, Sheng Y, Fan T, Cao S. Negative regulation of cadmium tolerance in Arabidopsis by MMDH2. Plant Mol Biol. 2019;101:507–516. doi:10.1007/s11103-019-00923-w.
  • Nan N, Wang J, Shi Y, Qian Y, Jiang L, Huang S, Liu Y, Wu Y, Liu B, Xu ZY. Rice plastidial NAD-Dependent Malate Dehydrogenase 1 negatively regulates salt stress response by reducing the Vitamin B6 content. Plant Biotechnol J. 2019;18(1):172–184. doi:10.1111/pbi.13184.
  • Laporte MM, Shen B, Tarczynski MC. Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot. 2002;53:699–705. doi:10.1093/jexbot/53.369.699.