761
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Characterization of PsmiR319 during flower development in early- and late-flowering tree peonies cultivars

, , , , &
Article: 2120303 | Received 27 Jul 2022, Accepted 29 Aug 2022, Published online: 06 Oct 2022

References

  • Zhang L, Guo DL, Guo LL, Guo Q, Wang HF, Hou XG. Construction of a high-density genetic map and QTLs mapping with GBS from the interspecific F1 population of P. ostii ‘Fengdan Bai’ and P. suffruticosa ‘Xin Riyuejin’. Sci Hortic. 2019;246:190–10. doi:10.1016/j.scienta.2018.10.039.
  • Wang XJ, Liang HY, Guo DL, Guo LL, Duan XG, Jia QS, Hou XG. Integrated analysis of transcriptomic and proteomic data from tree peony (P. ostii) seeds reveals key developmental stages and candidate genes related to oil biosynthesis and fatty acid metabolism. Hortic. Res. 2019;6:111. doi:10.1038/s41438-019-0194-7.
  • Xue YQ, Liu R, Xue JQ, Wang SL, Zhang XX. Genetic diversity and relatedness analysis of nine wild species of tree peony based on simple sequence repeats markers. Hortic Plant J. 2021;7(6):579–588. doi:10.1016/j.hpj.2021.05.004.
  • Zhou L, Wang Y, Peng Z. Molecular characterization and expression analysis of chalcone synthase gene during flower development in tree peony (Paeonia suffruticosa). Afr J Biotechnol. 2011;10(8):1275–1284. doi:10.5897/AJB10.599.
  • Xi HV, He YJ, Chen HY. Functional characterization of SmbHLH13 in anthocyanin biosynthesis and flowering in eggplant. Hortic Plant J. 2021;7(1):73–80. doi:10.1016/j.hpj.2020.08.006.
  • Zhang M, Yang QQ, Yuan X, Yan XL, Wang J, Cheng TR, Zhang QX. Integrating genome-wide association analysis with transcriptome sequencing to identify candidate genes related to blooming time in Prunus mume. Front. Plant Sci. 2021;12:690841. doi:10.3389/fpls.2021.690841.
  • Sheng Y, Hao ZD, Peng Y, Liu SQ, Hu LF, Shen YB, Shi JS, Chen JH. Morphological, phenological, and transcriptional analyses provide insight into the diverse flowering traits of a mutant of the relic woody plant Liriodendron chinense. Hortic. Res. 2021;8:174. doi:10.1038/s41438-021-00610-2.
  • Sriboon S, Li HT, Guo CC, Senkhamwong T, Dai C, Liu KD. Knock-out of TERMINAL FLOWER 1 genes altered flowering time and plant architecture in Brassica napus. BMC Genet. 2020;21:1–13. doi:10.1186/s12863-020-00857-z.
  • Li XY, Bian HW, Song DF, Ma SY, Han N, Wang JH, Zhu MY. Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot. 2013;111(5):791–799. doi:10.1093/aob/mct034.
  • Li XY, Guo F, Ma SY, Zhu MY, Pan WH, Bian HW. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia (Sinningia speciosa). JZUS-B. 2019;20(4):322–331. doi:10.1631/jzus.B1800003.
  • Wang J, Long Y, Zhang JW, Xue MD, Huang GG, Huang K, Yuan QH, Pei XW. Combined analysis and miRNA expression profiles of the flowering related genes in common wild rice (oryza rufipogon Griff.). Genes Genomics. 2018;40(8):835–845. doi:10.1007/s13258-018-0688-y.
  • Feng L, Xia R, Liu YL. Comprehensive characterization of miRNA and PHAS loci in the diploid strawberry (Fragaria vesca) genome. Hortic Plant J. 2019;5(6):255–267. doi:10.1016/j.hpj.2019.11.004.
  • Wei XC, Xu W, Yuan YX, Yao QJ, Zhao YY, Wang ZY, Jiang WS, Zhang XW. Genome-wide investigation of microRNAs and their targets in Brassica rapa ssp. pekinensis root with Plasmodiophora brassicae infection. Hortic Plant J. 2016;2(4):209–216. doi:10.1016/j.hpj.2016.11.004.
  • Basso MF, Ferreira PCG, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HBC, Grossi-de-Sa MF. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J. 2019;17(8):1482–1500. doi:10.1111/pbi.13116.
  • Pandita D, Wani SH. MicroRNA as a tool for mitigating abiotic stress in rice (Oryza sativa L.). Recent Approaches in Omics for Plant Resilience to Climate Change. Khudwani, SKUAST-Kashmir, India: Springer; 2019. 109–133. doi:10.1007/978-3-030-21687-0_6.
  • Zhao ZL, Niu SY, Fan GQ, Deng MJ, Wang YL. Genome-wide analysis of gene and microRNA expression in diploid and autotetraploid Paulownia fortunei (Seem) Hemsl. under drought stress by transcriptome, microRNA, and degradome sequencing. Forests. 2018;9(2):88. doi:10.3390/f9020088.
  • Chen XM. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Sci. 2004;303(5666):2022–2025. doi:10.1126/science.1088060.
  • Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell. 2009;138(4):738–749. doi:10.1016/j.cell.2009.06.014.
  • Wang ST, Sun XL, Hoshino Y, Yu Y, Jia B, Sun ZW, Sun MZ, Duan XB, Zhu YM. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PloS one. 2014;9(3):e91357. doi:10.1371/journal.pone.0091357.
  • Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell. 2007;19(9):2736–2748. doi:10.1105/tpc.107.054528.
  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol. 2006;16(9):939–944. doi:10.1016/j.cub.2006.03.065.
  • Shi XP, Jiang FL, Wen JQ, Wu Z. Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). BMC Plant Biol. 2019;19(1):214. doi:10.1186/s12870-019-1823-x.
  • Ma XL, Zhang XG, Zhao KK, Li FP, Li K, Ning LL, He JL, Xin ZY, Yin DM. Small RNA and degradome deep sequencing reveals the roles of microRNAs in seed expansion in peanut (Arachis hypogaea L.). Front Plant Sci. 2018;9:349. doi:10.3389/fpls.2018.00349.
  • Guo YL, Qin XT, Zhang B, Xu XJ, Li ZN, Li MY. Overexpression of miR319 in petunia (Petunia × hybrida) promotes de novo shoot organogenesis from leaf explants. Vitro Cell Dev Biol Plant. 2021;57(1):72–79. doi:10.1007/s11627-020-10063-2.
  • Koyama T, Sato F, Ohme-Takagi M. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiol. 2017;175(2):874–885. doi:10.1104/pp.17.00732.
  • Liu J, Cheng XL, Liu P, Li DY, Chen T, Gu XF, Sun JQ. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis. PLoS Genet. 2017;13(5):e1006833. doi:10.1371/journal.pgen.1006833.
  • Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF. Repression of cell proliferation by miR319-regulated TCP4. Mol Plant. 2014;7(10):1533–1544. doi:10.1093/mp/ssu084.
  • Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA. 2009;106(52):22534–22539. doi:10.1073/pnas.0908718106.
  • Rubio-Somoza I, Weigel D. Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genet. 2013;9(3):e1003374. doi:10.1371/journal.pgen.1003374.
  • Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet. 2010;6(7):e1001031. doi:10.1371/journal.pgen.1001031.
  • Khan M, Rozhon W, Poppenberger B. The role of hormones in the aging of plants-a mini-review. Gerontology. 2014;60(1):49–55. doi:10.1159/000354334.
  • Zeng JB, Ye ZL, He XY, Zhang GP. Identification of microRNAs and their targets responding to low-potassium stress in two barley genotypes differing in low-K tolerance. J Plant Physiol. 2019;234:44–53. doi:10.1016/j.jplph.2019.01.011.
  • Zhou M, Li DY, Li ZG, Hu Q, Yang CH, Zhu LH, Luo H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 2013;161(3):1375–1391. doi:10.1104/pp.112.208702.0.
  • Zhou M, Luo H. Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signaling Behav. 2014;9(4):1375–1391. doi:10.4161/psb.28700.
  • Zhang L, Song CW, Guo DL, Guo LL, Hou XG, Wang HF. Identification of differentially expressed miRNAs and their target genes in response to brassinolide treatment on flowering of tree peony (Paeonia ostii). Plant Signal. Behav. 2022;17(1):2056364. doi:10.1080/15592324.2022.2056364.
  • Si JN, Quan MY, Xiao L, Xie JB, Du QZ, Zhang DQ. Genetic interactions among Pto-miR319 family members and their targets influence growth and wood properties in Populus tomentosa. Mol Genet Genomics. 2020;295(4):855–870. doi:10.1007/s00438-020-01667-9.
  • Sobkowiak L, Jarmolowski A, Karlowski W, Szweykowska-Kulinska Z. Non-canonical processing of Arabidopsis pri-miR319a/b/c generates additional microRNAs to target one RAP2. 12 mRNA isoform. Front Plant Sci. 2012;3:46. doi:10.3389/fpls.2012.00046.
  • Liu WH, Lin ZC, Liu YY, Li HS, Ni SS, Lin YL, Lai ZX. Cloning and evolution characteristics of pre-miR395a and promoter analysis in wild banana (Musa itinerans). Chin J Appl Environ Biol. 2018;24(1):0089–0096. doi:10.19675/j.cnki.1006-687x.2017.09042.
  • Joshi G, Chauhan C, Das S. Microsynteny analysis to understand evolution and impact of polyploidization on MIR319 family within Brassicaceae. Dev Genes Evol. 2018;228(6):227–242. doi:10.1007/s00427-018-0620-0.
  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell. 2007;13(1):115–125. doi:10.1016/j.devcel.2007.04.012.
  • Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 2008;6(9):e230. doi:10.1371/journal.pbio.0060230.
  • Balsemão-Pires E, Andrade LR, Sachetto-Martins G. Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiol Biochem. 2013;67:120–125. doi:10.1016/j.plaphy.2013.03.009.
  • Fang YJ, Zheng YQ, Lu W, Li J, Duan YJ, Zhang S, Wang YP. Roles of miR319-regulated TCPs in plant development and response to abiotic stress. Crop J. 2021;9(1):17–28. doi:10.1016/j.cj.2020.07.007.
  • Sarvepalli K, Nath U. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J. 2011;67(4):595–607. doi:10.1111/j.1365-313X.2011.04616.x.
  • Liu S, Wang X, Li E, Douglas CJ, Chen JG, Wang S. R2R3 MYB transcription factor PtrMYB192 regulates flowering time in Arabidopsis by activating FLOWERING LOCUS C. J Plant Biol. 2013;56(4):243–250. doi:10.1007/s12374-013-0135-1.
  • Tominaga R, Iwata M, Sano R, Inoue K, Okada K, Wada T. Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development. 2008;135(7):1335–1345. doi:10.1242/dev.017947.
  • Wang BH , Sun, XX, Dong FY, Zhang F, Niu J-X. Cloning and expression analysis of an MYB gene associated with calyx persistence in korla fragrant pear. Plant Cell Rep. 2014;33(8):1333–1341. doi:10.1007/s00299-014-1619-2.
  • Zhang LC, Liu GX, Jia JZ, Zhao GY, Xia C, Zhang LN, Li F, Zhang Q, Dong CH, Gao SC, et al. The wheat MYB-related transcription factor TaMYB72 promotes flowering in rice. J Integr Plant Biol. 2016;58(8):701–704. doi:10.1111/jipb.12461.
  • Li XB, Hong Y, Jackson A, Guo FQ. Dynamic regulation of small RNAs in anthocyanin accumulation during blueberry fruit maturation. Sci. Rep. 2021;11(1):15080. doi:10.1038/s41598-021-93141-8.
  • Huang JH, Lin XJ, Zhang LY, Wang XD, Fan GC, Chen LS. Microrna sequencing revealed citrus adaptation to long-term boron toxicity through modulation of root development by mir319 and mir171. Int. J. Mol. Sci. 2019;20(6):1422. doi:10.3390/ijms20061422.
  • Reichel M, Millar AA. Specificity of plant microRNA target MIMICs: cross-targeting of mir159 and mir319. J. Plant Physiol. 2015;180:45–48. doi:10.1016/j.jplph.2015.03.010.
  • Zhu L, Li SS, Ma QY, Wen J, Yan KY, Li QZ. The Acer palmatum TCP transcription factor ApTCP2 controls leaf morphogenesis, accelerates senescence, and affects flowering via miR319 in Arabidopsis thaliana. J Plant Growth Regul. 2021;41:244–256. doi:10.1007/s00344-021-10299-1.