4,067
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Building bridges: mycelium–mediated plant–plant electrophysiological communication

ORCID Icon & ORCID Icon
Article: 2129291 | Received 23 Aug 2022, Accepted 22 Sep 2022, Published online: 17 Nov 2022

References

  • Chen Y, Zhao D-J, Wang Z-Y, Wang Z-Y, Tang G, Huang L. Plant electrical signal classification based on waveform similarity. Algorithms. 2016;9:70. doi:10.3390/a9040070.
  • Smith SE, Read DJ eds. Mycorrhizal symbiosis. 2nd ed. Cambridge, MA: Academic Press; 2016.
  • Babikova Z, Johnson D, Bruce T, Pickett J, Gilbert L. How rapid is aphid-induced signal transfer between plants via common mycelial networks? Comm. Integr Biol. 2013;6(6):1.
  • Song YY, Zeng RS, Zu JF, Li J, Shen X, Yihdego WG. Interplant communication of tomato plants through underground common mycorrhizal networks. Plos One. 2013. doi:10.1371/journal.pone.0013324.
  • Akhtar MS, Siddiqui Z. Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens (Dordrecht, Nl). 2008. p. 6,61. doi:10.1007/978-1-4020-8770-7_3.
  • Selosse M, Richard F, He X, Simard S. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol. 2006;21:11. doi:10.1016/j.tree.2006.07.003.
  • Rich MK, Schorderet M, Reinhardt D. The role of the cell wall compartment in mutualistic symbioses of plants. Frontiers Plant Sci. 2014. doi:10.3389/fpls.2014.00238.
  • Smith S, Gianinazzi-Pearson V. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann Rev Plant Physiol Plant Mol Biol. 1988;39:221–15. doi:10.1146/annurev.pp.39.060188.001253.
  • Volkov AG, Shtessel YB. Electrical signal propagation within and between tomato plants. Bioelectrochemistry. 2018;124:195–205. doi:10.1016/j.bioelechem.2018.08.001.
  • Volkov AG, Shtessel YB. Underground electrotonic signal transmission between plants. Comm Integr Biol. 2020;13(1):54–58. doi:10.1080/19420889.2020.1757207.
  • McLean CB, Cunnington JH, Lawrie AC. Molecular diversity within and between ericoid endophytes from the ericaceae and epacridaceae. New Phytol. 1999;144:351–358. doi:10.1046/j.1469-8137.1999.00510.x.
  • Chilvers GA, Gust LW. Comparison of the growth rates between mycorrhizas, uninfected roots and a mycorrhizal fungus of eucalyptus St. Johnii R T Bak New Phytol. 1982;91:43–466.
  • Lewicki ML. A review of methods for spike sorting: the detection and classification of neural action potentials. Network: Comp Neural Sys. 1998;9(4):R53. doi:10.1088/0954-898X_9_4_001.
  • Baslow MH. The languages of neurons: an analysis of coding mechanisms by which neurons communicate, learn and store information. Entropy. 2009;11(4):782–797. doi:10.3390/e11040782.
  • Slayman CL, Long WS, Gradmann D. “Action potentials” in Neurospora crassa, a mycelial fungus. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1976;426(4):732–744. doi:10.1016/0005-2736(76)90138-3.
  • Olsson S, Hansson BS. Action potential-like activity found in fungal mycelia is sensitive to stimu-lation. Naturwissensch. 1995;82(1):30–31. doi:10.1007/BF01167867.
  • Adamatzky A. On spiking behaviour of oyster fungus Pleurotus djamor. Sci Rep 2018. 2018;8:1–7.
  • Adamatzky A, Gandia A, Chiolerio A. Towards fungal sensing skin. Fungal Biol Biotechnol. 2021;8:6. doi:10.1186/s40694-021-00113-8.
  • Adamatzky A, Nikolaidou A, Gandia A, Chiolerio A, Dehshibi MM. Reactive fungal wearable. Biosys. 2021;199:104304. doi:10.1016/j.biosystems.2020.104304.
  • Lek S, Guégan JF. Artificial neural networks as a tool in ecological modelling, an introduction. Ecolog Model. 1999;120(2–3):65–73. doi:10.1016/s0304-3800(99.
  • Hedrich R, Salvador-Recatalà V, Dreyer I. Electrical wiring and long-distance plant communication. Trends Plant Sci. 2016;21(5):376–387. doi:10.1016/j.tplants.2016.01.016.
  • Adamatzky A. Language of fungi derived from electrical spiking activity. Royal Soc Pub. 2022;9:4. doi:10.1098/rsos.211926.
  • Baluška F. Recent surprising similarities between plant cells and neurons. Plant Signal Behav. 2010;5:87–89. doi:10.4161/psb.5.2.11237.
  • Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. Front Plant Sci. 2013;4:354. doi:10.3389/fpls.2013.00354.
  • Melo H. The Sensory Biology, communication, memory and intelligence of plants. 2022. p. 69. Cambridge Scholars Publishing, United Kingdom.
  • Berbara RLL, Morris RM, Fonseca HMAC, Reid B, Gow NAR, Daft MJ. Electrical currents associated with arbuscular mycorrhizal interactions. New Phytol. 1995;129(3):433–438. doi:10.1111/j.1469-8137.1995.tb04314.x.
  • Beiler KJ, Simard SW, Durall DM. Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J Ecol. 2015;103(3):616–628. doi:10.1111/1365-2745.12387.
  • White J, Yamashita F. Boquila trifoliolata leaves of an artificial plastic host plant. Plant Signal Behav. 2022:17. doi:10.1080/15592324.2021.1977530.
  • Greggers U, Koch G, Schmidt V, Durr A, Floriou-Servou A, Piepenbrock D, Gopfert M, Menzel R. Reception and learning of electric fields in bees. The Royal Soc Pub. 2013. doi:10.1098/rspb.2013.0528.
  • Gagliano M. The flowering of plant bioacoustics: how and why (Oxford, U.K.: Oxford University Press). 2013. doi:10.1093/beheco/art021.
  • Stamets P. Mycelium running: how mushrooms can help save the world. New York: Ten Speed Press; 2005. p. 10.
  • Davidson FA. Mathematical modeling of mycelia: a question of scale. Fungal Biol Rev. 2007;21:30–41. doi:10.1016/j.fbr.2007.02.005.