625
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

HDACs MADS-domain protein interaction: a case study of HDA15 and XAL1 in Arabidopsis thaliana

ORCID Icon, , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2353536 | Received 27 Feb 2024, Accepted 01 May 2024, Published online: 21 May 2024

References

  • Chen X, Ding AB, Zhong X. Functions and mechanisms of plant histone deacetylases. Sci China Life Sci. 2020;63(2):206–12. doi:10.1007/s11427-019-1587-x.
  • Lucchesi JC. Epigenetics, nuclear organization & gene function. In: Epigenetics, Nuclear Organization & Gene Function. Oxford University Press; 2019. doi:10.1093/oso/9780198831204.001.0001.
  • Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002;30(23):5036–5055. doi:10.1093/nar/gkf660.
  • Milazzo G, Mercatelli D, Di Muzio G, Triboli L, De Rosa P, Perini G, Giorgi FM. Histone deacetylases (HDACs): Evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes. 2020;11(5). 556. MDPI AG. doi:10.3390/genes11050556.
  • Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci. 2021;78(10):4467–4486. Springer Science and Business Media Deutschland GmbH. doi:10.1007/s00018-021-03794-x.
  • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol. 2004;338(1):17–31. doi:10.1016/j.jmb.2004.02.006.
  • Seto E, Yoshida M. Erasers of histone Acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713. doi:10.1101/cshperspect.a018713.
  • Gaffe J, Lemercier C, Alcaraz JP, Kuntz M. Identification of three tomato flower and fruit MADS-box proteins with a putative histone deacetylase binding domain. Gene. 2011;471(1–2):19–26. doi:10.1016/j.gene.2010.10.002.
  • Han A, He J, Wu Y, Liu JO, Chen L. Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J Mol Biol. 2005;345(1):91–102. doi:10.1016/j.jmb.2004.10.033.
  • Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem. 2000;275(20):15594–15599. doi:10.1074/jbc.M908437199.
  • Dong C, Yang XZ, Zhang CY, Liu YY, Zhou R, Bin C, Di Q, Yan EK, Yin DC. Myocyte enhancer factor 2C and its directly-interacting proteins: A review. Prog Biophys Mol Biol. 2017;126:22–30. doi:10.1016/j.pbiomolbio.2017.02.002.
  • Mead J, Bruning AR, Gill MK, Steiner AM, Acton TB, Vershon AK. Interactions of the Mcm1 MADS box protein with cofactors that regulate mating in yeast. Mol Cell Biol. 2002;22(13):4607–4621. doi:10.1128/MCB.22.13.4607-4621.2002.
  • Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene. 2003;316(1–2):1–21. doi:10.1016/S0378-1119(03)00747-9.
  • Alvarez-Buylla ER, García-Ponce B, Sánchez MDLP, Espinosa-Soto C, García-Gómez ML, Piñeyro-Nelson A, Garay-Arroyo A. MADS-box genes underground becoming mainstream: plant root developmental mechanisms. New Phytol. 2019;223(3):1143–1158. Blackwell Publishing Ltd. doi:10.1111/nph.15793.
  • Smaczniak C, Immink RGH, Angenent GC, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies. Development (Cambridge). 2012;139(17):3081–3098. doi:10.1242/dev.074674.
  • Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C. Structural basis for plant MADS transcription factor oligomerization. Comput Struct Biotechnol J. 2019;17:946–953. doi:10.1016/j.csbj.2019.06.014.
  • Wang Z, Qin G, Zhao TC. HDAC4: Mechanism of regulation and biological functions. Epigenomics. 2014;6(1):139–150. Future Medicine Ltd. doi:10.2217/epi.13.73.
  • Hill K, Wang H, Perry SE. A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. Plant Journal. 2008;53(1):172–185. doi:10.1111/j.1365-313X.2007.03336.x.
  • Gu X, Wang Y, He Y, Chen X. Photoperiodic regulation of flowering time through periodic histone deacetylation of the florigen gene FT. PLOS Biol. 2013;11(9):e1001649. doi:10.1371/journal.pbio.1001649.
  • Zhao L, Lu J, Zhang J, Wu PY, Yang S, Wu K. Identification and characterization of histone deacetylases in Tomato (Solanum Lycopersicum). Front Plant Sci. 2015;5(JAN):1–9. doi:10.3389/fpls.2014.00760.
  • García-Cruz KV, García-Ponce B, Garay-Arroyo A, De La Paz Sanchez M, Ugartechea-Chirino Y, Desvoyes B, Pacheco-Escobedo MA, Tapia-López R, Ransom-Rodríguez I, Gutierrez C. et al. The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components. Ann Bot. 2016;118(4):787–796. doi:10.1093/aob/mcw126.
  • Rodríguez-Bolaños M, Martínez T, Juárez S, Quiroz S, Domínguez A, Garay-Arroyo A, Sanchez MDLP, Álvarez-Buylla ER, García-Ponce B. XAANTAL1 reveals an additional level of flowering regulation in the shoot apical meristem in response to light and increased temperature in Arabidopsis. Int J Mol Sci. 2023;24(16):12773. doi:10.3390/ijms241612773.
  • Tapia-López R, García-Ponce B, Dubrovsky JG, Garay-Arroyo A, Pérez-Ruíz RV, Kim S-H, Acevedo F, Pelaz S, Alvarez-Buylla ER. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol. 2008;146(3):1182–1192. doi:10.1104/pp.107.108647.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi:10.1093/molbev/mst010.
  • Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.61. 2019;3:61. http://www.mesquiteproject.org.
  • Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–791. doi:10.2307/2408678.
  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274. doi:10.1093/molbev/msu300.
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–589. doi:10.1038/nmeth.4285.
  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–522. doi:10.1093/molbev/msx281.
  • Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–542. doi:10.1093/sysbio/sys029.
  • Huelsenbeck JP, Larget B, Alfaro ME. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol. 2004;21(6):1123–1133. doi:10.1093/molbev/msh123.
  • Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE); 2010 Nov 14; New Orleans, LA. 2010. p. 1–8. doi:10.1109/GCE.2010.5676129.
  • Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP. Review Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. CMLS, Cell Mol Life Sci. 1997;53(8):621–645. doi:10.1007/s000180050082.
  • Silva PJ. Assessing the reliability of sequence similarities detected through hydrophobic cluster analysis. Proteins Struct Funct Bioinf. 2007;70(4):1588–1594. doi:10.1002/prot.21803.
  • Gaboriaud C, Bissery V, Benchetrit T, Mornon JP. Hydrophobic cluster analysis: An efficient new way to compare and analyse amino acid sequences. FEBS Lett. 1987;224(1):149–155. doi:10.1016/0014-5793(87)80439-8.
  • Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein–protein docking. Nat Protoc. 2020;15(5):1829–1852. doi:10.1038/s41596-020-0312-x.
  • Chen CY, Tu YT, Hsu JC, Hung HC, Liu TC, Lee YH, Chou CC, Cheng YS, Wu K. Structure of Arabidopsis histone deacetylase15. Plant Physiol. 2020;184(3):1585–1600. doi:10.1104/pp.20.00604.
  • Belda-Palazón B, Ruiz L, Martí E, Tárraga S, Tiburcio AF, Culiáñez F, Farràs R, Carrasco P, Ferrando A, Heazlewood JL. Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells. PLoS One. 2012;7(10):e46907. doi:10.1371/journal.pone.0046907.
  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput Biol. 2019;15(4):1–28. doi:10.1371/journal.pcbi.1006650.
  • Lu J, McKinsey TA, Zhang C, and Olson EN. Regulation of Skeletal Myogenesis by Association of the MEF2 Transcription Factor with Class II Histone Deacetylases. Molecular Cell. 2000;6(2), 233–244. doi:10.1016/S1097-2765(00)00025-3.
  • Liu X, Chen C-Y, Wang K-C, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y. et al. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell. 2013;25(4):1258–1273. doi:10.1105/tpc.113.109710.
  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics. 2008;2008:1–5. doi:10.1155/2008/420747.
  • Ito T, Wellmer F, Yu H, Das P, Ito N, Rcio Alves-Ferreira M, Riechmann JL, Meyerowitz EM. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature. 2004 Jul 15. 430(6997):356–360. doi:10.1038/nature02733. PMID: 15254538.
  • Lee J, Oh M, Park H, Lee I. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant Journal. 2008;55(5):832–843. doi:10.1111/j.1365-313X.2008.03552.x.
  • Iype JM, Mishra R, Karthikeyan S, Babu S, Gothandam KM. Analysis of histone deacetylase families of Arabidopsis thaliana and Oryza sativa. Afr J Agric Res. 2013;8(2):201–207. doi:10.5897/AJAR11.1906.
  • Vakser IA. Protein-protein docking: From interaction to interactome. Biophys J. 2014;107(8):1785–1793. Biophysical Society. doi:10.1016/j.bpj.2014.08.033.
  • Scafuri B, Bontempo P, Altucci L, De Masi L, Facchiano A. Molecular docking simulations on histone deacetylases (Hdac)-1 and-2 to investigate the flavone binding. Biomedicines. 2020;8(12):1–10. doi:10.3390/biomedicines8120568.
  • Durham J, Zhang J, Humphreys IR, Pei J, Cong Q. Recent advances in predicting and modeling protein–protein interactions. Trends Biochem Sci. 2023;48(6):527–538. Elsevier Ltd. doi:10.1016/j.tibs.2023.03.003.
  • Plateau-Holleville C, Guionnière S, Boyer B, Jimenez-Garcia B, Levieux G, Merillou S, Maria M, Montes M. UDock2: interactive real-time multi-body protein-protein docking software. Bioinformatics. 2023;39(10). doi:10.1093/bioinformatics/btad609.
  • Alinsug MV, Chen FF, Luo M, Tai R, Jiang L, Wu K, Wu Q. Subcellular localization of class II HDAs in Arabidopsis thaliana: Nucleocytoplasmic shuttling of HDA15 is driven by light. PLoS One. 2012;7(2):e30846. doi:10.1371/journal.pone.0030846.
  • Castelán-Muñoz N, Herrera J, Cajero-Sánchez W, Arrizubieta M, Trejo C, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants. Front Plant Sci. 2019;10(July). doi:10.3389/fpls.2019.00853.
  • Pacheco-Escobedo MA, Ivanov VB, Ransom-Rodríguez I, Arriaga-Mejía G, Ávila H, Baklanov IA, Pimentel A, Corkidi G, Doerner P, Dubrovsky JG. et al. Longitudinal zonation pattern in Arabidopsis root tip defined by a multiple structural change algorithm. Ann Bot. 2016;118(4):763–776. doi:10.1093/aob/mcw101.
  • Jiang J, Ding AB, Liu F, Zhong X, Probst A. Linking signaling pathways to histone acetylation dynamics in plants. J Exp Bot. 2020;71(17):5179–5190. doi:10.1093/jxb/eraa202.
  • Xiong L, Zhou W, Mas P. Illuminating the Arabidopsis circadian epigenome: Dynamics of histone acetylation and deacetylation. Curr Opin Plant Biol. 2022;69:102268. doi:10.1016/j.pbi.2022.102268.
  • Tsuchiya Y, Yamamori Y, Tomii K. Protein-protein interaction prediction methods: from docking-based to AI-based approaches. Biophys Rev. 2022;14(6):1341–1348. doi:10.1007/s12551-022-01032-7.