472
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The 14-3-3 protein nt GF14e interacts with CIPK2 and increases low potassium stress in tobacco

, , , , , , , , , & show all
Article: 2359257 | Received 20 Feb 2024, Accepted 01 May 2024, Published online: 02 Jun 2024

References

  • Ashley MK, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteinsm. Exp Bot. 2006;57(2):425–11. doi:10.1093/jxb/erj034.
  • Evansh HJ. In potassium in biochemistry and physiology. Proc Colloq Int Potach Inst. 1971;8:13–29.
  • Ramage CM, Williams RR. Mineral uptake in tobacco leaf discs during different developmental stages of shoot organogenesis. Plant Cell Rep. 2003;21(11):1047–1053. doi:10.1007/s00299-003-0628-3.
  • Wang XQ, Wang BW, Song ZB, Zhao L, Ruan WY, Gao YL, Jia XQ, Yi KK. A spatial–temporal understanding of gene regulatory networks and NtARF-mediated regulation of potassium accumulation in tobacco. Planta. 2021;255(1):9. doi:10.1007/s00425-021-03790-2.
  • Pi K, Luo W, Mo ZJ, Duan LL, Ke YZ, Wang PS, Zeng SB, Huang Y, Liu RX. Over dominant expression of related genes of ion homeostasis improves K+ content ad-vantage in hybrid tobacco leaves. BMC Plant Biol. 2022;22(1):335. doi:10.1186/s12870-022-03719-1.
  • Epstein E, Rains WD, Elzam OE. Resolution of dual mechanisms of potassium absorption by barley roofs. Proc Natl Acad Sci USA. 1963;49(5):684–692. doi:10.1073/pnas.49.5.684.
  • Memon AR, Saccomani M, Glass ADM. Efficiency of potassium utilization by barley varieties: The role of subcellular compartmentation. Exp Bot. 1985;36(12):1869–1876. doi:10.1093/jxb/36.1.79.
  • Huang Y, Wang WS, Yu H, Peng JH, Hu ZR, Chen L. The role of 14-3-3 proteins in plant growth and response to abiotic stress. Plant Cell Rep. 2022;41(4):833–852. doi:10.1007/s00299-021-02803-4.
  • Denison FC, Paul AL, Zupanska AK, Ferl RJ. 14-3-3 proteins in plant physiology. Semin Cell Dev Biol. 2011;22(7):720–727. doi:10.1016/j.semcdb.2011.08.006.
  • Qi H, Lei X, Wang Y, Yu S, Liu T, Zhou SK, Chen JY, Chen QF, Qiu RL, Jiang LW. Xiao S.14-3-3 proteins contribute to autophagy by modulating SINAT-mediated of ATG13. Plant Cell. 2022;34(12):4857–4876. doi:10.1093/plcell/koac273.
  • Janicka S, Augustyniak H. Multifunctional 14-3-3 proteins of plant cell. Postepy Biochemii. 2006;52(3):303–312.
  • Ma Y, Wu ZY, Dong JF, Zhang SH, Zhao JL, Yang TF, Yang W, Zhou L, Wang J, Chen JS. et al. The 14-3-3 protein OsGF14f interacts with OsbZIP23 and enhances its activity to confer osmotic stress tolerance in rice. Plant Cell. 2023;35(11):4173–4189. doi:10.1093/plcell/koad211.
  • Gupta S, Misra S, Kumar M, Mishra SK, Tiwar S, Anshu SN, Agrawal L, Chauhan PS, Chauhan PS. Enhancement of drought tolerance in transgenic Arabidopsis thaliana plants overexpressing Chickpea Ca14-3-3 gene. J Plant Growth Regul. 2023;42(3):1544–1557. doi:10.1007/s00344-022-10639-9.
  • Pan R, Ren WJ, Liu SS, Zhang H, Deng X, Wang B. Ectopic over-expression of HaFT-1,a 14-3-3 protein from haloxylon ammodendron, enhances acquired thermotolerance in transgenic Arabidopsis. Plant Mol Biol. 2023;112(4–5):261–277. doi:10.1007/s11103-023-01361-5.
  • Saalbach G, Schwerdel M, Natura G, Buschmann P, Dahse I, Dahse I. Over-expression of plant 14-3-3 proteins in tobacco: enhancement of the plasmalemma K + conductance of mesophyll cells 1 2. FEBS Lett. 1997;413(2):294–298. doi:10.1016/S0014-5793(97)00865-X.
  • den Wijngaard Pw V, Sinnige MP, Roobeek I, Reumer A, Schoonheim PJ, Mo JN, Wang M, De Boer AH. Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root. Plant Journal. 2005;41(1):43–55. doi:10.1111/j.1365-313X.2004.02273.x.
  • He Y, Zhang Y, Chen L, Wu C, Luo Q, Zhang F, Wei Q, Li K, Chang J, Yang G. et al. A member of the 14-3-3 gene family in Brachypodium distachyon,BdGF14d,confers salt tolerance in transgenic tobacco plants. Front Plant Sci. 2017;8:340. doi:10.3389/fpls.2017.00340.
  • Lu LM, Yang SY, Liu L, Lu YF, Yang SM, Liu F, Ni S, Zeng FC, Ren B, Wang XY. et al. Physiological and quantitative proteomic analysis of NtPRX63-overexpressing tobacco plants revealed that NtPRX63 functions in plant salt resistance. Plant Physiol Bioch. 2020;154:30–42. doi:10.1016/j.plaphy.2020.04.022.
  • Li LQ, Lyu CC, Li JH, Wan CY, Liu L, Xie MQ, Zuo RJ, Ni S, Liu F, Zeng FC. et al. Quantitative proteomic analysis of alligator weed leaves reveals that cationic peroxidase 1 plays vital roles in the potassium deficiency stress response. Int J Mol Sci. 2020;21(7):2537. doi:10.3390/ijms21072537.
  • Xu J, Li HT, Chen LQ, Wang Y, Liu LL, He L, Wu LH. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis.Cell. Cell. 2006;125(7):1347–1360. doi:10.1016/j.cell.2006.06.011.
  • Sehnke PC, Delille JM, Ferl RJ. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell. 2002;14(1):339–354. doi:10.1105/tpc.010430.
  • Tian FX, Wang T, Xie YL, Zhang J, Hu JJ, Pandey GK. Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in Populus. PLoS One. 2015;10(4):e0123225. doi:10.1371/journal.pone.0123225.
  • Qin C, Cheng LM, Shen JQ, Zhang YH, Cao HM, Lu D, Shen CJ. Genome-wide identification and expression analysis of the 14-3-3 family genes in Medicago truncatula. Front Plant Sci. 2016;7:320. doi:10.3389/fpls.2016.00320.
  • Chandna R, Augustine R, Kanchupati P, Kumar R, Kumar P, Arya GC, Bisht NC. Class specific evolution and transcriptional differentiation of 14-3-3 family members in mesohexaploid Brassica rapa. Front Plant Sci. 2016;7:1–10. doi:10.3389/fpls.2016.00012.
  • Paul AL, Sehnke PC, Ferl RJ. Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions. Mol Biol Cell. 2005;16(4):1735–1743. doi:10.1091/mbc.e04-09-0839.
  • Shin R, Alvarez S, Burch AY, Jez JM, Schachtman DP. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci USA. 2007;104(15):6460–6465. doi:10.1073/pnas.0610208104.
  • Yang TY, Zhang S, Hu YB, Wu FC, Hu QD, Chen G, Cai J, Wu T, Moran N, Yu L. et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol. 2014;166(2):945–959. doi:10.1104/pp.114.246520.
  • Paul WJ, Wijngaard VD, Mark PS, Roobeek I, Reumer A, Peter JS, Jos NMM, Wang M, Albertus HDB. Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root. Plant. 2004;41(1):43–55. doi:10.1111/j.1365-313X.2004.02273.x.
  • Wang Y, Wu WH. Regulation of potassium transport and signaling in plants. Curr Opin Plant Biol. 2017;39:123–128. doi:10.1016/j.pbi.2017.06.006.
  • Elsa RZ, Claire CF, Frédéric SC, Christian B, Tou CH. Ca2+-dependent protein kinase 6 enhances KAT2 shaker channel activity in Arabidopsis thaliana. Int J Mol Sci. 2021;22(4):1596. doi:10.3390/ijms22041596.
  • Kleeff PJMV, Gao J, Mol S, Zwart N, Zhang H, Li KW, Boer AHD. The Arabidopsis, GORK K+-channel is phosphorylated by calcium-dependent protein kinase 21 (CPK21), which in turn is activated by 14-3-3 proteins. Plant Physiol Biochem. 2018;125:219–231. doi:10.1016/j.plaphy.2018.02.013.
  • Isayenkov S, Isner JC, Frans JMM. Rice two-pore K+ channels are expressed in different types of vacuoles. Plant Cell. 2011;23(2):756–768. doi:10.1105/tpc.110.081463.
  • Latz A, Becker D, Hekman M, Müller T, Beyhl D, Marten IE, Fischer C, Dunkel A, Bertl M, A RU. et al. TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant Journal. 2007;52(3):449–459. doi:10.1111/j.1365-313X.2007.03255.x.
  • Takeo K, Ito T. Subcellular localization of VIP1 is regulated by phosphorylation and 14-3-3 proteins. FEBS Lett. 2017;591(13):1972–1981. doi:10.1002/1873-3468.12686.
  • Lara A, Ródenas R, Andrés Z, Martínez V, Quintero FJ, Nieves-Cordones M, Botella MA, Rubio F, Dietz K-J. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9. J Exp Bot. 2020;71(16):5053–5060. doi:10.1093/jxb/eraa212.
  • Zhu X, Pan T, Zhang X, Fan L, Quintero FJ, Zhao H, Su X, Li X, Villalta I, Mendoza I. et al. K+ efflux antiporters 4, 5, and 6 mediate pH and K+ homeostasis in endomembrane compartments. Plant Physiol. 2018;178(4):1657–1678. doi:10.1104/pp.18.01053.
  • Fan L, Zhao L, Hu W, Li W, Novák O, Strnad M, Simon S, Friml J, Shen J, Jiang L. et al. Na+, K+/H+ antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development. Plant, Cell & Environ. 2018;41(4):850–864. doi:10.1111/pce.13153.
  • Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Ueda NT. A snare complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell. 2008;20(11):3006–3021. doi:10.1105/tpc.107.057711.
  • Leyman B, Geelen D, Quintero FJ, Blatt MR. A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science. 1999;283(5401):537–540. doi:10.1126/science.283.5401.537.
  • Eisenach C, Chen ZH, Grefen C, Blatt MR. The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. Plant Journal. 2012;69(2):241–251. doi:10.1111/j.1365-313X.2011.04786.x.
  • Zhang B, Karnik R, Wang YZ, Wallmeroth N, Blatt MR, Grefenb C. The Arabidopsis R-SNARE VAMP721 interacts with KAT1 and KC1 K+ channels to moderate K+ current at the plasma membrane. Plant Cell. 2015;27(6):1697–1717. doi:10.1105/tpc.15.00305.
  • Shanko AV, Mesenko MM, Klychnikov OI, Nosov AV, Ivanov VB. Proton pumping in growing part of maize root: its correlation with 14-3-3 protein content and changes in response to osmotic stress. Biochemistry (Mosc). 2003;68:1320–1326. doi:10.1023/B:BIRY.0000011653.46422.c3.
  • Xu WF, Jia LG, Shi WM, Balujka F, Kronzucker HJ, Liang JS, Zhang JH. The tomato 14-3-3 protein’TFT4 modulates Heflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress. Plant Physiol. 2013;163(4):1817–1828. doi:10.1104/pp.113.224758.
  • Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneji Y, Aitken A, Gamblin SJ. Structure of a 14-3-3 protein and implications for coordination of multiple signaling pathways. Nature. 1995;376(6536):188–191. doi:10.1038/376188a0.
  • Olsson A, Svennelid F, Ek B, Sommarin M, Larsson C. A phosphothreonine residue at the C-terminal end of the plasma membrane H+-ATPase is protected by fusicoccin-induced 14-3-3 binding. Plant Physiol. 1998;118(2):551–555. doi:10.1104/pp.118.2.551.
  • Alamgir ANM. Effect of transpiration on the rate of absorption of potassium in some crop plants. Indian J Plant Physiol. 1997;2(3):239–241.
  • Jahn T, Fuglsang AT, Olsson A, Brüntrup IM, Collinge DB, Volkmann D, Sommarin M, Palmgren MG, Larsson C. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase. Plant Cell. 1997;9(10):1805–1814. doi:10.1105/tpc.9.10.1805.
  • Li CX, Huang DJ, Wang CL, Wang N, Yao YD, Li WF, Liao WB. NO is involved in H2-induced adventitious rooting in cucumber by regulating the expression and interaction of plasma membrane H+-ATPase and 14-3-3. Planta. 2020;252(1):9. doi:10.1007/s00425-020-03416-z.
  • Chen YX, Zhou XJ, Chang S, Chu ZL, Wang HM, Han SC, Wang YD. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Biochem Bioph Res Co. 2017;493:1450–1456. doi:10.1016/j.bbrc.2017.09.166.
  • Lei XT, Chen MM, Xu K, Sun RX, Zhao SH, Wu NJ, Zhang SH, Yang HJ, Xiao K, Zhao Y. The miR166d/tacpk7-D signaling module is a critical mediator of wheat (Triticum aestivum L.) tolerance to K+ deficiency. Int J Mol Sci. 2023;24(9):7926. doi:10.3390/ijms24097926.
  • Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y. Phosphorylation-independent binding of 14-3-3 to NtCDPK1 by a new mode. Plant Signal Behav. 2014;9(12):e977721. doi:10.4161/15592324.2014.977721.
  • Swatek KN, Wilson RS, Ahsan N, Tritz RL, Thelen JJ. Multisite phosphorylation of 14-3-3 proteins by calcium-dependent protein kinases. Biochem (Moscow). 2014;459(1):15–25. doi:10.1042/BJ20130035.
  • Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero RM, Martínez V, Pardo JM, Quintero FJ. CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol. 2015;169:2863–2873. doi:10.1104/pp.15.01401.
  • Li J, Long Y, Qi GN, Li J, Xu ZJ, Wu WH, Wang Y. The Os-AKT1 channel is critical for K+ uptake in rice roots and Is modulated by the rice CBL1-CIPK23 complex. Plant Cell. 2014;26(8):3387–3402. doi:10.1105c.114.123455.
  • Amo J, Lara A, Martinez-Martinez A, Martinez V, Rubio F, Nieves-Cordones M. The protein kinase SlCIPK23 boosts K+ and Na+ uptake in tomato plants. Plant, Cell Environment. 2021;44(12):3589–3605. doi:10.1111/pce.14189.
  • Saito S, Uozumi N. Calcium-regulated phosphorylation systems controlling uptake and balance of plant nutrients. Front Plant Sci. 2020;11:44. doi:10.3389/fpls.2020.00044.