241
Views
0
CrossRef citations to date
0
Altmetric
Research paper

NaHS immersion alleviates the stress effect of chromium(III) on alfalfa seeds by affecting active oxygen metabolism

, , &
Article: 2375673 | Received 08 May 2024, Accepted 28 Jun 2024, Published online: 07 Jul 2024

References

  • Lesins KA, Lesins I. Genus Medicago (Leguminosae): a taxogenetic study. The Hague: Dr. W, Junk Publishers; 2012.
  • Chekol T, Vough LR. A study of the use of alfalfa (Medicago sativa L.) for the phytoremediation of organic contaminants in soil. Rem J. 2001;11(4):89–10. doi:10.1002/rem.1017.
  • El-Ramady H, Abdalla N, Kovacs S, Domokos-Szabolcsy É, Bákonyi N, Fari M, Geilfus, C.M., Alfalfa growth under changing environments: an overview. Environ Biodivers Soil Secur. 2020;4(2020):201–224.
  • Ertani A, Mietto A, Borin M, Nardi S. Chromium in agricultural soils and crops: a review. Water Air Soil Pollut. 2017;228(5):1–12. doi:10.1007/s11270-017-3356-y.
  • Shafique F, Ali Q, Saleem MZ, Bhatti Y, Zikrea A, Malik D. Effect of manganese and chromium toxicity on growth and photosynthetic pigments of maize. Plant Cell Biotechnol Mol Bio. 2021;21:58–64.
  • Rahman MM, Rahman MM, Islam KS, Chongling Y. Effect of chromium stress on antioxidative enzymes and malondialdehyde content activities in leaves and roots of mangrove seedlings Kandelia candel (L.) Druce. J For Environ Sci. 2010;26(3):171–179.
  • Lu NH, Wu LM, Yang R, Li H, Shan CJ. Neodymium improves the activity of ascorbate-glutathione cycle and chloroplast function of wheat seedlings under chromium stress. Photosynthetica. 2020;58(3):748–754. doi:10.32615/ps.2020.024.
  • Yu X-Z, Feng Y-X, Liang Y-P. Kinetics of phyto-accumulation of hexavalent and trivalent chromium in rice seedlings. Int Biodeterior Biodegradation. 2018;128:72–77. doi:10.1016/j.ibiod.2016.09.003.
  • Guo L, Ling L, Wang X, Cheng T, Wang H, Ruan Y. Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism. BMC Plant Biol. 2023;23(1):1–16. doi:10.1186/s12870-023-04089-y.
  • Oloumi H, Maleki M, Habibipour L, Lotfi S. Foliar application of NaHS alleviates Cd toxicity in soybean plants through regulation of Glutathione metabolism. Plant Stress. 2024;11:100363–100371. doi:10.1016/j.stress.2024.100363.
  • Kaya C, Shabala S. Sodium hydrosulfide-mediated upregulation of nitrogen metabolism improves drought stress tolerance in pepper plants. Environ Exp Bot. 2023;209:105305–105319. doi:10.1016/j.envexpbot.2023.105305.
  • Zulfiqar F. Effect of seed priming on horticultural crops. Sci Hortic (Amsterdam). 2021;286:110197–110203. doi:10.1016/j.scienta.2021.110197.
  • Zulfiqar F, Ashraf M. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. J Hazard Mater. 2022;427:127891–1279109. doi:10.1016/j.jhazmat.2021.127891.
  • Zulfiqar F, Hancock JT. Hydrogen sulfide in horticulture: emerging roles in the era of climate change. J Plant Physiol Biohem. 2020;155:667–675. doi:10.1016/j.plaphy.2020.08.010.
  • Jurado-Flores A, Aroca A, Romero LC, Gotor C, Kopriva S, Kopriva S. Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis. J Exp Bot. 2023;74(15):4654–4669. doi:10.1093/jxb/erad165.
  • Wang X, Shi C, Hu Y, Ma Y, Yi Y, Jia H, Li F, Sun H, Li T, Wang X. et al. Persulfidation maintains cytosolic G6PDs activity through changing tetrameric structure and competing cysteine sulfur oxidation under salt stress in Arabidopsis and tomato. New Phytol. 2023;240(2):626–643. doi:10.1111/nph.19188.
  • Amist N, Singh N. Regulation of metal stress toxicity in plants by the hydrogen sulfide. In: Hydrogen Sulfide in plant biology. Elsevier Inc; 2021. p. 87–102. doi:10.1016/B978-0-323-85862-5.00013-0.
  • Yang X, Ren J, Yang W, Xue J, Gao Z, Yang Z. Hydrogen sulfide alleviates chromium toxicity by promoting chromium sequestration and re-establishing redox homeostasis in Zea mays L. Environ Pollut. 2023;332:121958–121999. doi:10.1016/j.envpol.2023.121958.
  • Li L, Wang Y, Shen W. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. BioMetals. 2012;25(3):617–631. doi:10.1007/s10534-012-9551-9.
  • Yang X, Kong L, Wang Y, Su J, Shen W. Methane control of cadmium tolerance in alfalfa roots requires hydrogen sulfide. Environ Pollut. 2021;284:117123–117136. doi:10.1016/j.envpol.2021.117123.
  • Gay C, Collins J, Gebicki JM. Hydroperoxide assay with the ferric–xylenol orange complex. Analytical Biochem. 1999;273(2):149–155. doi:10.1006/abio.1999.4208.
  • Elstner EF, Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem. 1976;70(2):616–620. doi:10.1016/0003-2697(76)90488-7.
  • Yang M, Qin B-P, Ma X-L, Wang P, Li M-L, Chen L-I, Chen L-T, Sun A-Q, Wang Z-I, Yin Y-P. Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, can protect seedlings against heat stress in wheat (Triticum aestivum L.). J Integr Agric. 2016;15(12):2745–2758. doi:10.1016/S2095-3119(16)61358-8.
  • Amooaghaie R, Zangene-Madar F, Enteshari S. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. Ecotoxicol Environ Saf. 2017;139:210–218. doi:10.1016/j.ecoenv.2017.01.037.
  • Foster JG, JLJPp H. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 1980;66(3):482–487. doi:10.1104/pp.66.3.482.
  • Wang H, Zhong X, W-Y S, Guo BJAJo G. Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. Afr J Biotechnol. 2011;10(45):9213–9217. doi:10.5897/AJB11.782.
  • Jin S, Ding Z, Xie J. Study of postharvest quality and antioxidant capacity of freshly cut amaranth after Blue LED light treatment. Plants. 2021;10(8):1614–1627. doi:10.3390/plants10081614.
  • Li X, Jjs L. Determination of the content of soluble sugar in sweet corn with optimized anthrone colorimetric method. Storage Process. 2013;13(4):24–27.
  • Sedmak JJ, Grossberg SE. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977;79(1–2):544–552. doi:10.1016/0003-2697(77)90428-6.
  • Bates LS, Waldren RA, Teare IJP. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–207. doi:10.1007/BF00018060.
  • Chen C-P, Juang K-W, Lin T-H, Lee D-Y. Assessing the phytotoxicity of chromium in Cr(VI)-spiked soils by Cr speciation using XANES and resin extractable Cr(III) and Cr(VI). Plant Soil. 2010;334(1–2):299–309. doi:10.1007/s11104-010-0383-5.
  • Shanker AK, Pathmanabhan G. Speciation dependant antioxidative response in roots and leaves of sorghum (Sorghum bicolor (L.) Moench cv CO 27) under Cr (III) and Cr (VI) stress. Plant Soil. 2004;265(1):141–151. doi:10.1007/s11104-005-0332-x.
  • Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A. Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere. 2006;64(10):1695–1703. doi:10.1016/j.chemosphere.2006.01.005.
  • Pang Z, Zhu Y, Guan D-X, Wang Y, Peng H, Liang Y. Unveiling mechanisms of silicon-mediated resistance to chromium stress in rice using a newly-developed hierarchical system. Plant Physiol Bioch. 2024;207:108368–108376. doi:10.1016/j.plaphy.2024.108368.
  • Fang L, Ju W, Yang C, Duan C, Cui Y, Han F, Shen G, Zhang C. Application of signaling molecules in reducing metal accumulation in alfalfa and alleviating metal-induced phytotoxicity in Pb/Cd-contaminated soil. Ecotox Environ Safe. 2019;182:109459–109466. doi:10.1016/j.ecoenv.2019.109459.
  • Bahmanbiglo FA, Eshghi S. Improving the growth, yield and iron concentration of strawberry using sodium hydrosulfide (NaHS) under soilless culture. J Plant Nutr. 2023;47(5):786–796. doi:10.1080/01904167.2023.2281518.
  • Li J, Wang X, Wang X, Ma P, Yin W, Wang Y, Chen Y, Chen S, Jia H. Hydrogen sulfide promotes hypocotyl elongation via increasing cellulose content and changing the arrangement of cellulose fibrils in alfalfa. J Exp Bot. 2020;71(19):5852–5864. doi:10.1093/jxb/eraa318.
  • Zhang J, Liang X, Xie S, Liang Y, Liang S, Zhou J, Huang Y. Effects of hydrogen sulfide on the growth and physiological characteristics of Miscanthus sacchariflorus seedlings under cadmium stress. Ecotox Environ Safe. 2023;263:115281–115289. doi:10.1016/j.ecoenv.2023.115281.
  • Zhang X, Ding Y, Yang M, Wei A, Huo D. The role of NaHS pretreatment in improving salt stress resistance in foxtail millet seedlings: physiological and molecular mechanisms. Plant Signaling Behav. 2023;18(1):2276611–2276623. doi:10.1080/15592324.2023.2276611.
  • Zanganeh R, Jamei R, Rahmani F. Pre-sowing seed treatment with salicylic acid and sodium hydrosulfide confers Pb toxicity tolerance in maize (Zea mays L.). Ecotoxicol Environ Saf. 2020;206:111392–111400. doi:10.1016/j.ecoenv.2020.111392.
  • Kharbech O, Houmani H, Chaoui A, Corpas FJ. Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H 2 S donors through differential organ-dependent regulation of ROS and NADPH-recycling metabolisms. J Plant Physiol. 2017;219:71–80. doi:10.1016/j.jplph.2017.09.010.
  • Kaya C, Ashraf M, Akram NA. Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime. Environ Sci Pollut Res. 2018;25(13):12612–12618. doi:10.1007/s11356-018-1510-8.
  • Song Y, Lv J, Ma Z, Dong W. The mechanism of alfalfa (Medicago sativa L.) response to abiotic stress. Plant Growth Regul. 2019;89(3):239–249. doi:10.1007/s10725-019-00530-1.
  • da Silva Cj, Batista Fontes EP, Modolo LV, da Silva CJ. Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Plant Sci. 2017;256:148–159. doi:10.1016/j.plantsci.2016.12.011.
  • Lin Y-J, Feng X-H, Feng Y-X. Regulation of enzymatic and non-enzymatic antioxidants in rice seedlings against chromium stress through sodium hydrosulfide and sodium nitroprusside. Environ Sci Pollut Res. 2022;30(10):25851–25862. doi:10.1007/s11356-022-23917-6.
  • Zhang X, Zheng X, Han Y, Yang R, Wang Q, Gong D, Li Y, Prusky D, Bi Y. UV-C irradiation maintains cell membrane integrity at wounds of potato tubers during healing by regulating ROS homeostasis and increasing antioxidant activity. Postharvest Biol Technol. 2023;199:112308–112315. doi:10.1016/j.postharvbio.2023.112308.
  • Ozfidan-Konakci C, Yildiztugay E, Elbasan F, Kucukoduk M, Turkan I. Hydrogen sulfide (H2S) and nitric oxide (NO) alleviate cobalt toxicity in wheat (Triticum aestivum L.) by modulating photosynthesis, chloroplastic redox and antioxidant capacity. J Hazard Mater. 2020;388:122061–122075. doi:10.1016/j.jhazmat.2020.122061.
  • Li S-P, Hu K-D, Hu L-Y, Li Y-H, Jiang A-M, Xiao F, Han Y, Liu Y-S, Zhang H. Hydrogen sulfide alleviates postharvest senescence of broccoli by modulating antioxidant defense and senescence-related gene expression. J Agr Food Chem. 2014;62(5):1119–1129. doi:10.1021/jf4047122.
  • Yu X-Z, Fan W-J, Lin Y-J. Analysis of gene expression profiles for metal tolerance protein in rice seedlings exposed to both the toxic hexavalent chromium and trivalent chromium. Int Biodeterior Biodegradation. 2018;129:102–108. doi:10.1016/j.ibiod.2018.01.011.
  • Yu X-Z, Lin Y-J, Zhang Q. Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. Chemosphere. 2019;220:300–313. doi:10.1016/j.chemosphere.2018.12.119.
  • Yu X-Z, Lu C-J, Li Y-H. Role of cytochrome c in modulating chromium-induced oxidative stress in Oryza sativa. Environ Sci Pollut Res. 2018;25(27):27639–27649. doi:10.1007/s11356-018-2817-1.
  • Yu X-Z, Lu C-J, Lin Y-J, Li Y-H. Cr-induced disturbance on expression of six COX genes in rice seedlings. Int J Environ Sci Technol. 2019;16(5):2385–2394. doi:10.1007/s13762-018-1848-y.