155
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Generating Annual Fire Risk Maps Using Bayesian Hierarchical Models

, , , &
Pages 509-533 | Received 12 Apr 2013, Accepted 25 Jun 2013, Published online: 05 May 2014

References

  • Bajocco, S., and C. Ricotta. 2008. Evidence of selective burning in Sardinia (Italy): Which land-cover classes do wildfires prefer? Landscape Ecol., 23(2), 241–248.
  • Banerjee, S., B. P. Carlin, and A. Gelfand. 2004. Hierarchical modeling and analysis for spatial data. Boca Raton, FL: Chapman and Hall.
  • Barros, A. M. G., J. M. C. Pereira, and U. Lund. 2012. Identifying geographical patterns of wildfire orientation: a watershed-based analysis. For. Ecol. Manage., 264, 98–107.
  • Bermudez, P. Z., J. Mendes, J. M. C. Pereira, K. F. Turkman, and M. J. P. Vasconcelos. 2009. Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004). Int. J. Wildland Fire, 18, 983–991.
  • Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen. 1984. Classification and regression trees. Boca Raton, FL: Chapman and Hall.
  • Carreiras, J. M. B., and J. M. C. Pereira. 2006. An inductive fire risk map for Portugal. Fo. Ecol. Manage., 234S, S56.
  • Chuvieco, E., B. Allgöwer, and J. Salas. 2003. Integration of physical and human factors in fire danger assessment. In Wildland fire danger estimation and mapping, ed. E. Chuvieco, 197–218. Singapore: World Scientific Publishing.
  • Cressie, N., and C. K. Wikle. 2011. Statistics for spatio-temporal data. Hoboken, NJ: John Wiley.
  • Danson, F. M., and P. Bowyer. 2004. Estimating live fuel moisture content from remotely sensed reflectance. Remote Sensing Environ., 92, 309–321.
  • Davison, A., and M. M. Gholamrezaee. 2011. Geostatistics of extremes. Proc. R. Soc. A 468, 581–608.
  • Dennison, P. E., D. A. Roberts, S. H. Peterson, and J. Rechel. 2005. Use of Normalized Difference Water Index for monitoring live fuel moisture. Int. J. Remote Sensing, 26(5), 1035–1042.
  • Diggle, P., and P. J. Ribeiro. 2007. Model-based geostatistics. New York: Springer-Verlag.
  • European Commission. 2012. Forest fires in Europe, Middle East, and North Africa 2011. EUR 25483 EN, 109. Luxembourg: Publications Office of the European Union.
  • Flannigan, M. D., and B. M. Wotton. 2001. Climate, weather, and area burned. In Forest fires—Behavior and ecological effects, ed. E. A. Johnson and K. Miyanishi (pp. 351–373). San Diego, CA: Academic Press.
  • Gelman, A., and I. Pardoe. 2005. Bayesian measures of explained variance and pooling in multilevel models. Technometrics, 40, 241–251.
  • Gneiting, T. 2002. Nonseparable, stationary covariance functions for space-time data. J. Am. Stat. Assoc., 97, 590–600.
  • Johnson, E. A. 1992. Fire and vegetation dynamics: Studies from the North American boreal forest. New York, NY: Cambridge University Press.
  • Johnson, E. A., and S. L. Gutsell. 1994. Fire frequency models. Methods and interpretations. Adv. Ecol. Res., 25, 239–287.
  • Johnson, N. L., A. W. Kemp, and S. Kotz. 2005. Univariate discrete distributions, 3rd ed., 510–511. New York, NY: Wiley.
  • Koutsias, N., M. Arianoutsou, A. S. Kallimanis, G. Mallinis, J. M. Halley, and P. Dimopoulos. 2012. Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric. For. Meteorol., 156, 41–53.
  • Le Page, Y., J. M. C. Pereira, R. Trigo, C. da Camara, D. Oom, and B. Mota. 2008. Global fire activity patterns (1996–2006) and climatic influence: an analysis using the world fire atlas. Atmos. Chem. Phys., 8, 1911–1924.
  • Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. WinBUGS—A Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput., 10, 325–337.
  • Mather, A., and J. M. C. Pereira. 2006. Transição florestal e fogo em Portugal. In Incêndios florestais em Portugal: caracterização, impactes e prevenção, (ed. J. S. Pereira, J. M. C. Pereira, F. Rego, J. M. N. Silva, and T. P. Silva, 257–282. Lisboa, Portugal: ISAPress.
  • McCarthy M. A., A. M. Gill, and R. A. Bradstock. 2001. Theoretical fire-interval distributions. Int. J. Wildland Fire, 10, 73–77.
  • Mendes, J. M., P. de Zea Bermudez, J. M. C. Pereira, K. F. Turkman, and M. J. P. Vasconcelos. 2010. Spatial extremes of wildfire sizes: Bayesian hierarchical models for extremes. Environ. Ecol. Stat., 17, 1–28.
  • Moller, J., and C. Diaz-Avalos. 2010. Structured spatio-temporal shotnoise Cox point process models, with a view to modelling forest fires. Scand. J. Stat., 34(1), 2–25.
  • Moller, J., and R. Waagepetersen. 2003. Statistical inference and simulation for spatial point processes. Boca Raton, FL: Chapman and Hall.
  • Moreira, F., F. C. Rego, and P. G. Ferreira. 2001. Temporal (1958–1959) pattern of change in a cultural landscape of northwestern Portugal: Implications for fire occurrence. Landscape Ecol., 16, 557–567.
  • Moritz, M. A. 2000. Spatiotemporal analysis of controls on shrubland fire regimes: age dependency and fire hazard. Ecology, 84, 351–361.
  • Moritz, M. A., J. E. Keeley, E. A. Johnson, and A. A. Shaffner. 2004. Testing a basic assumption of shrubland fire management: How important is fuel age? Front. Ecol. Environ., 2(2), 67–72.
  • Moritz, M. A., T. J. Moody, L. J. Miles, M. M. Smith, and P. de Valpine. 2009. The fire frequency analysis branch of the pyrostatistics tree: Sampling decisions and censoring in fire interval data. Environ. Ecol. Stat., 16, 271–289.
  • O’Connor, C. D., G. M. Garfin, D. A. Falk, and T. W. Swetnam. 2011. Human pyrogeography: A new synergy of fire, climate and people is reshaping ecosystems across the globe. Geogr. Compass, 5(6), 329–350.
  • O’Donnell, A. J., M. M. Boer, W. L. McCaw, and P. F. Grierson. 2010. Vegetation and landscape connectivity control wildfire intervals in unmanaged semiarid shrublands and woodlands in Australia. J. Biogeogr., 28, 37–48.
  • Oliveira, S. L. J., M. A. Amaral Turkman, and J. M. C. Pereira. 2012a. An analysis of fire frequency in tropical savannas of northern Australia, using a satellite-based fire atlas Int. J. Wildland Fire, http://dx.doi.org/10.1071/WF12021.
  • Oliveira, S. L. J., J. M. C. Pereira, and J. M. B. Carreiras. 2012b. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int. J. Wildland Fire, 21, 48–60.
  • Pausas, J. G., and S. Fernández-Muñoz. 2012. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Climatic Change, 110, 215–226.
  • Pereira, J. M. C., and T. N. Santos. 2003. Fire risk and burned area mapping in Portugal. Direcção-Geral das Florestas, Lisboa, Portugal.
  • Pereira, J. M. C., J. M. B. Carreiras, J. M. N. Silva, and M. J. P. Vasconcelos. 2006. Alguns conceitos básicos sobre os fogos rurais em Portugal. In Incêndios florestais em Portugal: caracterização, impactes e prevenção, ed. J. S. Pereira, J. M. C. Pereira, F. Rego, J. M. N. Silva, and T. P. Silva, 133–162. Lisboa, Portugal: ISAPress.
  • Pereira, M. G., R. M. Trigo, C. C. da Camara, J. M. C. Pereira, and S. M. Leite. 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol., 129, 11–25.
  • Pereira, P., and K. F. Turkman. 2012. Preliminary analysis of the forest fires in Portugal using point processes. Research report, CEAUL 10/12. http://www.ceaul.fc.ul.pt/notas.html?ano=2012.
  • Pereira, P., M. A. Amaral Turkman, and K. F. Turkman. 2012. Complementary report of the article “Annual Fire Risk maps: Some statistical issues.” Research report, CEAUL 11/12. http://www.ceaul.fc.ul.pt/notas.html?ano=2012.
  • Pettorelli, N., J. O. Vik, A. Mysterud, J. M. Gaillard, C. J. Tucker, and N. C. Stenseth. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol., 20(9), 503–510.
  • Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. CODA: Convergence diagnosis and output analysis for MCMC. R News, 6, 7–11.
  • Polakov, D. A., and T. T. Dunne. 1999. Modelling fire-return interval T: Stochasticity and censoring in two parameter Weibull model. Ecol. Model., 121, 79–102.
  • Preisler, H. K., D. R. Brillinger, R. E. Burgan, and J. W. Benoit. 2004. Probability based models for estimation of wildfire risk. Int. J. Wildland Fire, 13, 133–142.
  • Pyne, S. J., P. L. Andrews, and R. D. Laven. 1996. Introduction to wildland fire, 2nd ed. New York, NY: John Wiley & Sons.
  • R Development Core Team. 2011. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org
  • Reed, W. J. 2006. A note on fire frequency concepts and definitions. Can. J. For. Res., 36(7), 1884–1888.
  • Rego, F. 1992. Land use change and wildfires. In: Responses of forest ecosystems to environmental changes, ed. A. Teller, P. Mathy, and J. N. R. Jeffers, 367–373. London, UK: Elsevier Applied Science.
  • Rue, H., and L. Held. 2005. Gaussian Markov random fields: Theory and applications. Monographs on Statistics and Applied Probability, 104. Boca Raton, FL: Chapman & Hall/CR.
  • San-Miguel-Ayanz, J., J. D. Carlson, M. Alexander, K. Tolhurst, G. Morgan, R. Sneeuwjagt, and M. Dudley. 2003. Current methods to assess fire danger potential. In Wildland fire danger estimation and mapping—The role of remote sensing data, ed. E. Chuvieco, 21–61. Singapore: World Scientific.
  • Santos, C., A. Leite, E. Santos, J. Pinho. 2005. A estratégia sectorial florestal num sistema de planeamento regional (A strategy for the forest sector in a regional planning system). 5th National Forestry Congress, Theme 6—Forest Policy. Viseu, May 16–19. Portuguese Forest Sciences Society.
  • Trigo, R. M., J. M. C. Pereira, B. Mota, M. G. Pereira, C. C. da Camara, F. E. Santo, and M. T. Calado. 2006. Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int. J. Climatol, 26(13), 1741–1757.
  • Turkman, K. F., M. A. Amaral Turkman, and J. M. C. Pereira. 2010. Asymptotic models and inference for extremes of spatio-temporal data. Extremes, 13, 375–397.
  • Vasconcelos, M. J. P., S. Silva, M. Tomé, M. Alvim, and J. M. C. Pereira. 2001. Spatial prediction of fire ignition probabilities. Photogrammetric Eng. Remote Sensing, 67(1), 73–82.
  • Viegas, D. X., and M. T. Viegas. 1994. A relationship between rainfall and burned area for Portugal. Int. J. Wildland Fire, 4(1), 11–16.
  • Wheater, H. S., R. E. Chandler, C. J. Onof, V. S. Isham, E. Bellone, C. Yang, D. Lekkas, G. Lourmas, and M-L. Segond. 2005. Spatial-temporal rainfall modelling for flood risk estimation. Stochastic Environ. Res. Risk Assess, 19, 403–416.
  • Wilson, A. M., A. M. Latimer, J. A. Silander, Jr., A. E. Gelfand, and H. Klerk. 2010. A Hierarchical Bayesian model of wildfire in a Mediterranean biodiversity hotspot: Implications of weather variability and global circulation. Ecol. Model., 221, 106–112.
  • Whitlock, C., P. E. Higuera, D. B. McWethy, and C. E. Briles. 2010. Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. Open Ecol. J., 3, 6–23.
  • Yang, C., R. E. Chandler, V. Isham, and H. S. Wheater. 2005. Spatial-temporal rainfall simulation using generalized linear models. Water Resources Res., 41(11), article W11415.
  • Zhang, X., M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. F. Hodges, F. Gao, B. C. Reed, and A. Huete. 2003. Monitoring vegetation phenology using MODIS. Remote Sensing Environ., 84, 471–475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.