569
Views
0
CrossRef citations to date
0
Altmetric
Articles

Acousto-optic coupling in 1-D phoxonic potential well nanobeam cavity using slow modes

, , &

References

  • O’Brien, J.L. Optical quantum computing. Science 2007, 318, 1567–1570.
  • Perez-Garcia, B.; Francis, J.; McLaren, M.; Hernandez-Aranda, R.I.; Forbes, A.; Konrad, T. Quantum computation with classical light: The Deutsch algorithm. Phys. Lett. A 2015, 379, 1675–1680. DOI: 10.1016/j.physleta.2015.04.034.
  • Blais, A.; Girvin, S.M.; Oliver, W.D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 2020, 16, 247–256. DOI: 10.1038/s41567-020-0806-z.
  • Spitzer, W.; Fan, H.Y. Infrared absorption inn-type silicon. Phys. Rev. 1957, 108, 268–271. DOI: 10.1103/PhysRev.108.268.
  • Jalali, B.; Fathpour, S. Silicon photonics. J. Lightwave Technol. 2006, 24, 4600–4615. DOI: 10.1109/JLT.2006.885782.
  • Hochberg, M.; Harris, N.C.; Ding, R.; Zhang, Y.; Novack, A.; Xuan, Z.; Baehr-Jones, T. Silicon photonics: The next fabless semiconductor industry. IEEE Solid-State Circuits Mag. 2013, 5, 48–58. DOI: 10.1109/MSSC.2012.2232791.
  • Preble, S.F.; Xu, Q.; Lipson, M. Changing the colour of light in a silicon resonator. Nature Photon. 2007, 1, 293–296. DOI: 10.1038/nphoton.2007.72.
  • Mai, T.T.; Hsiao, F.-L.; Lee, C.; Xiang, W.; Chen, C.-C.; Choi, W.K. Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors. Sens. Actuators, A 2011, 165, 16–25. DOI: 10.1016/j.sna.2010.01.006.
  • Dai, D.; Bauters, J.; Bowers, J.E. Passive technologies for future large-scale photonic integrated circuits on silicon: Polarization handling, light non-reciprocity and loss reduction. Light. Sci. Appl. 2012, 1, e1-e1–e1. DOI: 10.1038/lsa.2012.1.
  • Heidler, P.; Schneider, C.M.F.; Kustura, K.; Gonzalez-Ballestero, C.; Romero-Isart, O.; Kirchmair, G. Non-Markovian effects of two-level systems in a niobium coaxial resonator with a single-photon lifetime of 10 milliseconds. Phys. Rev. Applied 2021, 16, 034024. DOI: 10.1103/PhysRevApplied.16.034024.
  • Ravi, J.; Chandrasekar, R. Micromechanical fabrication of resonator waveguides integrated four‐port photonic circuit from flexible organic single crystals. Adv. Opt. Mater. 2021, 9, 2100550. DOI: 10.1002/adom.202100550.
  • Krauss, T.F. Slow light in photonic crystal waveguides. J. Phys. D: Appl. Phys. 2007, 40, 2666–2670. DOI: 10.1088/0022-3727/40/9/S07.
  • Monat, C.; Corcoran, B.; Pudo, D.; Ebnali-Heidari, M.; Grillet, C.; Pelusi, M.D.; Moss, D.J.; Eggleton, B.J.; White, T.P.; O'Faolain, L.; Krauss, T.F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Select. Topics Quantum Electron. 2010, 16, 344–356. DOI: 10.1109/JSTQE.2009.2033019.
  • Yan, S.; Zhu, X.; Frandsen, L.H.; Xiao, S.; Mortensen, N.A.; Dong, J.; Ding, Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat. Commun. 2017, 8, 14411. DOI: 10.1038/ncomms14411.
  • Elshahat, S.; Abood, I.; Khan, K.; Yadav, A.; Wang, Q.; Liu, Q.; Lin, M.; Tao, K.; Ouyang, Z. Ultra-wideband slow light transmission with high normalized delay bandwidth product in w3 photonic crystal waveguide. Superlattices Microstruct. 2018, 121, 45–54. DOI: 10.1016/j.spmi.2018.07.025.
  • Lalanne, P.; Coudert, S.; Duchateau, G.; Dilhaire, S.; Vynck, K. Structural slow waves: Parallels between photonic crystals and plasmonic waveguides. ACS Photonics 2019, 6, 4–17. DOI: 10.1021/acsphotonics.8b01337.
  • Li, B.; Hsiao, F.-L.; Lee, C. Computational characterization of a photonic crystal cantilever sensor using a hexagonal dual-nanoring-based channel drop filter. IEEE Trans. Nanotechnology 2011, 10, 789–796. DOI: 10.1109/TNANO.2010.2079942.
  • Zhang, J.; Zhang, H.; Chen, S.; Yu, M.; Lo, G.Q.; Kwong, D.L. A tunable polarization diversity silicon photonics filter. Opt. Express. 2011, 19, 13063–13072. DOI: 10.1364/OE.19.013063.
  • Liu, Y.; Hotten, J.; Choudhary, A.; Eggleton, B.J.; Marpaung, D. All-optimized integrated RF photonic notch filter. Opt. Lett. 2017, 42, 4631–4634. DOI: 10.1364/OL.42.004631.
  • Daulay, O.; Liu, G.; Ye, K.; Botter, R.; Klaver, Y.; Tan, Q.; Yu, H.; Hoekman, M.; Klein, E.; Roeloffzen, C.; Liu, Y.; Marpaung, D. Ultrahigh dynamic range and low noise figure programmable integrated microwave photonic filter. Nat. Commun. 2022, 13, 7798. DOI: 10.1038/s41467-022-35485-x.
  • Liu, X.; Ren, G.; Xu, X.; Dubey, A.; Feleppa, T.; Boes, A.; Mitchell, A.; Lowery, A. ‘Dial up’ photonic integrated circuit filter. J. Lightwave Technol. 2023, 41, 1775–1783. DOI: 10.1109/JLT.2022.3226685.
  • Demir, H.V.; Sabnis, V.A.; Fidaner, O.; Jun-Fei, Z.; Harris, J.S.; Miller, D.A.B. Multifunctional integrated photonic switches. IEEE J. Select. Topics Quantum Electron. 2005, 11, 86–96. DOI: 10.1109/JSTQE.2004.841715.
  • Fang, Q.; Song, J.F.; Liow, T.-Y.; Cai, H.; Yu, M.B.; Lo, G.Q.; Kwong, D.-L. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photon. Technol. Lett. 2011, 23, 525–527. DOI: 10.1109/LPT.2011.2114336.
  • Kapfinger, S.; Reichert, T.; Lichtmannecker, S.; Muller, K.; Finley, J.J.; Wixforth, A.; Kaniber, M.; Krenner, H.J. Dynamic acousto-optic control of a strongly coupled photonic molecule. Nat. Commun. 2015, 6, 8540. DOI: 10.1038/ncomms9540.
  • Liu, X.; Qiao, Q.; Dong, B.; Liu, W.; Xu, C.; Xu, S.; Zhou, G. MEMS enabled suspended silicon waveguide platform for long-wave infrared modulation applications. Int. J. Optomechatronics 2022, 16, 42–57. DOI: 10.1080/15599612.2022.2137608.
  • Eichenfield, M.; Chan, J.; Camacho, R.M.; Vahala, K.J.; Painter, O. Optomechanical crystals. Nature 2009, 462, 78–82. DOI: 10.1038/nature08524.
  • Pennec, Y.; Rouhani, B.D.; Li, C.; Escalante, J.M.; Martinez, A.; Benchabane, S.; Laude, V.; Papanikolaou, N. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Adv. 2011, 1, 041901. DOI: 10.1063/1.3675799.
  • Hsiao, F.-L.; Hsieh, C.-Y.; Hsieh, H.-Y.; Chiu, C.-C. High-efficiency acousto-optical interaction in phoxonic nanobeam waveguide. Appl. Phys. Lett. 2012, 100, 171103. DOI: 10.1063/1.4705295.
  • Chiu, C.C.; Chen, W.M.; Sung, K.W.; Hsiao, F.L. High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity. Opt. Express. 2017, 25, 6076–6091. DOI: 10.1364/OE.25.006076.
  • Munk, D.; Katzman, M.; Hen, M.; Priel, M.; Feldberg, M.; Sharabani, T.; Levy, S.; Bergman, A.; Zadok, A. Surface acoustic wave photonic devices in silicon on insulator. Nat. Commun. 2019, 10, 4214. DOI: 10.1038/s41467-019-12157-x.
  • Navarro-Urrios, D.; Colombano, M.F.; Arregui, G.; Madiot, G.; Pitanti, A.; Griol, A.; Makkonen, T.; Ahopelto, J.; Sotomayor-Torres, C.M.; Martinez, A. Room-temperature silicon platform for GHz-frequency nanoelectro-opto-mechanical systems. ACS Photonics. 2022, 9, 413–419. DOI: 10.1021/acsphotonics.1c01614.
  • Eichenfield, M.; Camacho, R.; Chan, J.; Vahala, K.J.; Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 2009, 459, 550–555. DOI: 10.1038/nature08061.
  • Stannigel, K.; Rabl, P.; Sorensen, A.S.; Zoller, P.; Lukin, M.D. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 2010, 105, 220501. DOI: 10.1103/PhysRevLett.105.220501.
  • Kittel, C. Introduction to Solid State Physics. Wiley: United States of America, 2005.
  • Tsai, Y.-P.; Lin, B.-S.; Hsiao, F.-L. High-Q slow sound mode in a phononic fishbone nanobeam using an acoustic potential well cavity. Crystals 2023, 13, 95. DOI: 10.3390/cryst13010095.