1,575
Views
1
CrossRef citations to date
0
Altmetric
Articles

A method to improve the computational performance of nonlinear all—optical diffractive deep neural network model

, , , , , & show all

References

  • Lin, X.; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning using diffractive deep neural networks. Science 2018, 361, 1004–1008+. DOI: 10.1126/science.aat8084.
  • Shi, J.; Chen, Y.; Zhang, X. Broad-spectrum diffractive network via ensemble learning. Opt. Lett. 2022, 47, 605–608. DOI: 10.1364/OL.440421.
  • Luo, Y.; Mengu, D.; Yardimci, N.T.; Rivenson, Y.; Veli, M.; Jarrahi, M.; Ozcan, A. Design of task-specific optical systems using broadband diffractive neural networks. Light. Sci. Appl. 2019, 8, 112. DOI: 10.1038/s41377-019-0223-1.
  • Huang, Z.; Wang, P.; Liu, J.; Xiong, W.; He, Y.; Xiao, J.; Ye, H.; Li, Y.; Chen, S.; Fan, D. All-optical signal processing of vortex beams with diffractive deep neural networks. Phys. Rev. Appl. 2021, 15, 014037. DOI: 10.1103/PhysRevApplied.15.014037.
  • Mengu, D.; Luo, Y.; Rivenson, Y.; Lin, X.; Veli, M.; Ozcan, A. Response to comment on “All-optical machine learning using diffractive deep neural networks". arXiv preprint arXiv:1810.04384, 2018.
  • Wei, H.; Huang, G.; Wei, X.; Sun, Y.; Wang, H. Comment on” All-optical machine learning using diffractive deep neural networks". arXiv preprint arXiv:1809.08360, 2018.
  • Yan, T.; Wu, J.; Zhou, T.; Xie, H.; Xu, F.; Fan, J.; Fang, L.; Lin, X.; Dai, Q. Fourier-space diffractive deep neural network. Phys. Rev. Lett. 2019, 123, 023901. DOI: 10.1103/PhysRevLett.123.023901.
  • Zhou, T.; Fang, L.; Yan, T.; Wu, J.; Li, Y.; Fan, J.; Wu, H.; Lin, X.; Dai, Q. In situ optical backpropagation training of diffractive optical neural networks. Photon. Res. 2020, 8, 940–953. DOI: 10.1364/PRJ.389553.
  • Sun, Y.; Dong, M.; Yu, M.; Xia, J.; Zhang, X.; Bai, Y.; Lu, L.; Zhu, L. Nonlinear all-optical diffractive deep neural network with 10.6 µm wavelength for image classification. Int. J. Opt. 2021, 2021, 1–16.
  • Kulce, O.; Mengu, D.; Rivenson, Y.; Ozcan, A. All-optical information-processing capacity of diffractive surfaces. Light. Sci. Appl. 2021, 10, 25. DOI: 10.1038/s41377-020-00439-9.
  • Luo, X.; Hu, Y.; Ou, X.; Li, X.; Lai, J.; Liu, N.; Cheng, X.; Pan, A.; Duan, H. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light. Sci. Appl. 2022, 11, 158. DOI: 10.1038/s41377-022-00844-2.
  • Sun, Y.; Dong, M.; Yu, M.; Lu, L.; Liang, S.; Xia, J.; Zhu, L. Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials. Opt. Lett. 2022, 47, 126–129. DOI: 10.1364/OL.442970.
  • Idehenre, I.U.; Harper, E.S.; Mills, M.S. Diffractive deep neural network adjoint assist or (DNA) 2: A fast and efficient nonlinear diffractive neural network implementation. Opt. Express. 2022, 30, 7441–7456. DOI: 10.1364/OE.449415.
  • Chen, Y.; Zhu, J. An optical diffractive deep neural network with multiple frequency-channels. arXiv preprint arXiv:1912.10730, 2019.
  • Mengu, D.; Luo, Y.; Rivenson, Y.; Ozcan, A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Select. Topics Quantum Electron. 2020, 26, 1–14. DOI: 10.1109/JSTQE.2019.2921376.
  • Dou, H.; Deng, Y.; Yan, T.; Wu, H.; Lin, X.; Dai, Q. Residual D 2 NN: Training diffractive deep neural networks via learnable light shortcuts. Opt. Lett. 2020, 45, 2688–2691. DOI: 10.1364/OL.389696.
  • Mengu, D.; Zhao, Y.; Yardimci, N.T.; Rivenson, Y.; Jarrahi, M.; Ozcan, A. Misalignment resilient diffractive optical networks. Nanophotonics 2020, 9, 4207–4219. DOI: 10.1515/nanoph-2020-0291.
  • Mengu, D.; Rivenson, Y.; Ozcan, A. Scale-, shift-, and rotation-invariant diffractive optical networks. ACS Photonics 2021, 8, 324–334. DOI: 10.1021/acsphotonics.0c01583.
  • Su, J.; Yuan, Y.; Liu, C.; Li, J. Multitask learning by multiwave optical diffractive network. Math. Prob. Eng. 2020, 2020, 1–7. DOI: 10.1155/2020/9748380.
  • Shi, J.; Chen, M.; Wei, D.; Hu, C.; Luo, J.; Wang, H.; Zhang, X.; Xie, C. Anti-noise diffractive neural network for constructing an intelligent imaging detector array. Opt. Express. 2020, 28, 37686–37699. DOI: 10.1364/OE.405798.
  • Rahman, M.S.S.; Li, J.; Mengu, D.; Rivenson, Y.; Ozcan, A. Ensemble learning of diffractive optical networks. Light. Sci. Appl. 2021, 10, 14. DOI: 10.1038/s41377-020-00446-w.
  • Li, J.; Mengu, D.; Yardimci, N.T.; Luo, Y.; Li, X.; Veli, M.; Rivenson, Y.; Jarrahi, M.; Ozcan, A. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv. 2021, 7, eabd7690. DOI: 10.1126/sciadv.abd7690.
  • Xiao, Y.-L.; Li, S.; Situ, G.; You, Z. Optical random phase dropout in a diffractive deep neural network. Opt. Lett. 2021, 46, 5260–5263. DOI: 10.1364/OL.428761.
  • Shi, J.; Zhou, L.; Liu, T.; Hu, C.; Liu, K.; Luo, J.; Wang, H.; Xie, C.; Zhang, X. Multiple-view D 2 NNs array: Realizing robust 3D object recognition. Opt. Lett. 2021, 46, 3388–3391. DOI: 10.1364/OL.432309.
  • Panda, S.S.; Hegde, R.S. Fault tolerance and noise immunity in freespace diffractive optical neural networks. Eng. Res. Express. 2022, 4, 011301. DOI: 10.1088/2631-8695/ac4832.
  • Dong, C.; Cai, Y.; Dai, S.; Wu, J.; Tong, G.; Wang, W.; Wu, Z.; Zhang, H.; Xia, J. An optimized optical diffractive deep neural network with OReLU function based on genetic algorithm. Opt. Laser Technol. 2023, 160, 109104. DOI: 10.1016/j.optlastec.2022.109104.
  • Zhou, Y.; Shui, S.; Cai, Y.; Chen, C.; Chen, Y.; Abdi-Ghaleh, R. An improved all-optical diffractive deep neural network with less parameters for gesture recognition. J. Vis. Commun. Image Represent. 2023, 90, 103688. DOI: 10.1016/j.jvcir.2022.103688.
  • Mönning, N.; Manandhar, S. Evaluation of complex-valued neural networks on real-valued classification tasks. arXiv preprint arXiv:1811.12351, 2018.
  • Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv preprint arXiv:1710.05941, 2017.
  • Misra, D. Mish: A self regularized non-monotonic activation function. arXiv preprint arXiv:1908.08681, 2019.
  • Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010.
  • Sun, Y.; Wang, X.; Tang, X. Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
  • He, K.; Zhang, X.; Ren, A.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, 2015.
  • Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.
  • Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. Adv. Neural Inform. Process. Syst. 2017, 30. arXiv preprint arXiv:1706.02515, 2017.
  • Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. DOI: 10.1109/5.726791.
  • Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
  • Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.
  • Chen, H.; Feng, J.; Jiang, M.; Wang, Y.; Lin, J.; Tan, J.; Jin, P. Diffractive deep neural networks at visible wavelengths. Engineering 2021, 7, 1483–1491. DOI: 10.1016/j.eng.2020.07.032.