688
Views
0
CrossRef citations to date
0
Altmetric
Articles

Antibacterial properties of lithium niobate crystal substrates

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all

References

  • Prakash, J.; Sun, S.; Swart, H. C.; Gupta, R. K. Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Appl. Mater. Today. 2018, 11, 82–135. DOI: 10.1016/j.apmt.2018.02.002.
  • Monteiro, D. R.; Gorup, L. F.; Takamiya, A. S.; Ruvollo-Filho, A. C.; de Camargo, E. R.; Barbosa, D. B. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents. 2009, 34, 103–110. DOI: 10.1016/j.ijantimicag.2009.01.017.
  • Stobie, N.; Duffy, B.; McCormack, D. E.; Colreavy, J.; Hidalgo, M.; McHale, P.; Hinder, S. J. Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. Biomaterials 2008, 29, 963–969. DOI: 10.1016/j.biomaterials.2007.10.057.
  • Yu, J. C.; Ho, W.; Lin, J.; Yip, H.; Wong, P. K. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 2003, 37, 2296–2301. DOI: 10.1021/es0259483.
  • Van Acker, H.; Coenye, T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. 2017, 25, 456–466. DOI: 10.1016/j.tim.2016.12.008.
  • Kushwaha, H. S.; Halder, A.; Jain, D.; Vaish, R. Visible light-induced photocatalytic and antibacterial activity of Li-doped Bi0.5Na0.45K0.5TiO3-BaTiO3 ferroelectric ceramics. J. Elec. Mater. 2015, 44, 4334–4342. DOI: 10.1007/s11664-015-4007-y.
  • Gutmann, E.; Benke, A.; Gerth, K.; Böttcher, H.; Mehner, E.; Klein, C.; Krause-Buchholz, U.; Bergmann, U.; Pompe, W.; Meyer, D. C.; et al. Pyroelectrocatalytic disinfection using the pyroelectric effect of nano- and microcrystalline LiNbO3 and LiTaO3 particles. J. Phys. Chem. C 2012, 116, 5383–5393. DOI: 10.1021/jp210686m.
  • Damm, S.; Carville, N. C.; Rodriguez, B. J.; Manzo, M.; Gallo, K.; Rice, J. H. Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods. J. Phys. Chem. C 2012, 116, 26543–26550. DOI: 10.1021/jp310248w.
  • Carville, N. C.; Manzo, M.; Damm, S.; Castiella, M.; Collins, L.; Denning, D.; Weber, S. A. L.; Gallo, K.; Rice, J. H.; Rodriguez, B. J.; et al. Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals. ACS Nano. 2012, 6, 7373–7380. DOI: 10.1021/nn3025145.
  • Al-Shammari, R. M.; Baghban, M. A.; Al-Attar, N.; Gowen, A.; Gallo, K.; Rice, J. H.; Rodriguez, B. J. Photoinduced enhanced Raman from lithium niobate on insulator template. ACS Appl. Mater. Interfaces. 2018, 10, 30871–30878. DOI: 10.1021/acsami.8b10076.
  • Al-Attar, N.; Al-Shammari, R. M.; Manzo, M.; et al. Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays for Optical Sensing. 2018:AF2M.5.
  • Carville, N. C.; Collins, L.; Manzo, M.; Gallo, K.; Lukasz, B. I.; McKayed, K. K.; Simpson, J. C.; Rodriguez, B. J. Biocompatibility of ferroelectric lithium niobate and the influence of polarization charge on osteoblast proliferation and function. J. Biomed. Mater. Res. A 2015, 103, 2540–2548. DOI: 10.1002/jbm.a.35390.
  • Al-Shammari, R. M.; Manzo, M.; Gallo, K.; Rice, J. H.; Rodriguez, B. J. Tunable wettability of ferroelectric lithium niobate surfaces: the role of engineered microstructure and tailored metallic nanostructures. J. Phys. Chem. C 2017, 121, 6643–6649. DOI: 10.1021/acs.jpcc.6b12336.
  • Volk, T.; Wohlecke, M. Lithium niobate: defects, photorefraction and ferroelectric switching. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Springer Series in Materials Science. 2008, 115, 1–247. https://doi.org/10.1007/978-3-540-70766-0
  • Ozawa, K.; Emori, M.; Yamamoto, S.; Yukawa, R.; Yamamoto, S.; Hobara, R.; Fujikawa, K.; Sakama, H.; Matsuda, I. Electron-hole recombination time at TiO2 single-crystal surfaces: influence of surface band bending. J. Phys. Chem. Lett. 2014, 5, 1953–1957. DOI: 10.1021/jz500770c.
  • Mosier-Boss, P. A. Review on SERS of Bacteria. Biosensors (Basel) 2017, 7, 51. DOI: 10.3390/bios7040051.
  • Miccio, L.; Marchesano, V.; Mugnano, M.; Grilli, S.; Ferraro, P. Light induced DEP for immobilizing and orienting Escherichia coli bacteria. Opt. Lasers Eng. 2016, 76, 34–39. DOI: 10.1016/j.optlaseng.2015.03.025.
  • Alattar, N.; Daud, H.; Al-Majmaie, R.; Zeulla, D.; Al-Rubeai, M.; Rice, J. H. Surface-enhanced Raman scattering for rapid hematopoietic stem cell differentiation analysis. Appl. Opt. 2018, 57, E184–E189. DOI: 10.1364/AO.57.00E184.
  • Gatti, M.; Bernini, V.; Lazzi, C.; Neviani, E. Fluorescence microscopy for studying the viability of micro-organisms in natural whey starters. Lett. Appl. Microbiol. 2006, 42, 338–343. DOI: 10.1111/j.1472-765X.2006.01859.x.
  • Carville, N. C.; Neumayer, S. M.; Manzo, M.; Gallo, K.; Rodriguez, B. J. Biocompatible gold nanoparticle arrays photodeposited on periodically proton exchanged lithium niobate. ACS Biomater. Sci. Eng. 2016, 2, 1351–1356. DOI: 10.1021/acsbiomaterials.6b00264.
  • Tuson, H. H.; Weibel, D. B. Bacteria-surface interactions. Soft Matter. 2013, 9, 4368–4380. DOI: 10.1039/C3SM27705D.
  • Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Schubert, S.; Niessner, R.; Wieser, A.; Haisch, C. Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal. Chem. 2015, 87, 6553–6561.
  • Mushtaq, A.; Nawaz, H.; Majeed, M. I.; et al. Surface-enhanced raman spectroscopy (SERS) for monitoring colistin-resistant and susceptible E. coli strains. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2022, 278, 121315. DOI: 10.1016/j.saa.2022.121315
  • Liu, Y.; Zhou, H.; Hu, Z.; Yu, G.; Yang, D.; Zhao, J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens. Bioelectron. 2017, 94, 131–140. DOI: 10.1016/j.bios.2017.02.032.
  • Walter, A.; März, A.; Schumacher, W.; Rösch, P.; Popp, J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip. 2011, 11, 1013–1021. DOI: 10.1039/c0lc00536c.
  • Cui, L.; Chen, S. D.; Zhang, K. S. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 137, 1061–1066. DOI: 10.1016/j.saa.2014.08.155.
  • Siritongsuk, P.; Hongsing, N.; Thammawithan, S.; Daduang, S.; Klaynongsruang, S.; Tuanyok, A.; Patramanon, R. Two-phase bactericidal mechanism of silver nanoparticles against Burkholderia pseudomallei. PLoS One. 2016, 11, e0168098. DOI: 10.1371/journal.pone.0168098.
  • McShan, D.; Ray, P. C.; Yu, H. T. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 2014, 22, 116–127. DOI: 10.1016/j.jfda.2014.01.010.
  • Keleştemur, S.; Avci, E.; Çulha, M. Raman and surface-enhanced raman scattering for biofilm characterization. Chemosensors 2018, 6, 5. DOI: 10.3390/chemosensors6010005.
  • Chao, Y. Q.; Zhang, T. Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm. Anal. Bioanal. Chem. 2012, 404, 1465–1475. DOI: 10.1007/s00216-012-6225-y.
  • Goeller, L. J.; Riley, M. R. Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface-enhanced Raman spectroscopy. Appl. Spectrosc. 2007, 61, 679–685. DOI: 10.1366/000370207781393217.
  • Efeoglu, E.; Culha, M. In situ-monitoring of biofilm formation by using surface-enhanced Raman scattering. Appl. Spectrosc. 2013, 67, 498–505. DOI: 10.1366/12-06896.
  • Pereira, R. V.; Bicalho, M. L.; Machado, V. S.; Lima, S.; Teixeira, A. G.; Warnick, L. D.; Bicalho, R. C. Evaluation of the effects of ultraviolet light on bacterial contaminants inoculated into whole milk and colostrum, and on colostrum immunoglobulin G. J. Dairy Sci. 2014, 97, 2866–2875. DOI: 10.3168/jds.2013-7601.