752
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review of sensing and actuation technologies – from optical MEMS and nanophotonics to photonic nanosystems

, , , &

References

  • Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 2020, 8, 23022–23040. DOI: 10.1109/ACCESS.2020.2970118.
  • Le, X.; Shi, Q.; Vachon, P.; Ng, E.J.; Lee, C. Piezoelectric MEMS—evolution from sensing technology to diversified applications in the 5g/internet of things (IoT) era. J. Micromech. Microeng. 2022, 32, 014005. DOI: 10.1088/1361-6439/ac3ab9.
  • Lee, S.; Shi, Q.; Lee, C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 2019, 7, 031302.
  • Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.; Bin, Dong, B.; Lee, C. Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 2019, 11, 7. DOI: 10.3390/mi11010007.
  • Xiao, Z.; Liu, W.; Xu, S.; Zhou, J.; Ren, Z.; Lee, C. Recent progress in silicon‐based photonic integrated circuits and emerging applications. Adv. Opt. Mater. 2023, 11, 2301028. DOI: 10.1002/adom.202301028.
  • Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of things (IoT): A vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 2013, 29, 1645–1660. DOI: 10.1016/j.future.2013.01.010.
  • Zhang, Z.; Wen, F.; Sun, Z.; Guo, X.; He, T.; Lee, C. Artificial intelligence‐enabled sensing technologies in the 5G/internet of things era: From virtual reality/augmented reality to the digital twin. Adv. Intell. Syst. 2022, 4, 2100228.
  • Tsybeskov, L.; Lockwood, D.J.; Ichikawa, M. Silicon photonics: CMOS going optical. Proc. IEEE 2009, 97, 1161–1165. DOI: 10.1109/JPROC.2009.2021052.
  • Miller, D.A.B. Physical reasons for optical interconnection. Int. J. Optoelectron. 1997, 11, 155–168.
  • Nahmias, M.A.; De Lima, T.F.; Tait, A.N.; Peng, H.T.; Shastri, B.J.; Prucnal, P.R. Photonic multiply-accumulate operations for neural networks. IEEE J. Select. Topics Quantum Electron. 2020, 26, 1–18. DOI: 10.1109/JSTQE.2019.2941485.
  • Patterson, P.R.; Hah, D.; Lee, M.M.C.; Tsai, J.C.; Wu, M.C. Recent advances in optical MEMS devices and systems. Proc. SPIE 2002, 4788, 1–8. DOI: 10.1117/12.453712.
  • Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. DOI: 10.1088/0957-0233/24/1/012004.
  • Yang, W.; Chen, J.; Zhang, Y.; Zhang, Y.; He, J.; Fang, X. Silicon‐compatible photodetectors: Trends to monolithically integrate photosensors with chip technology. Adv. Funct. Mater. 2019, 29, 1808182.
  • Haroun, A.; Le, X.; Gao, S.; Dong, B.; He, T.; Zhang, Z.; Wen, F.; Xu, S.; Lee, C. Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications. Nano Ex. 2021, 2, 022005. DOI: 10.1088/2632-959X/abf3d4.
  • Petersen, K.E. Micromechanical light modulator array fabricated on silicon. Appl. Phys. Lett. 1977, 31, 521–523. DOI: 10.1063/1.89761.
  • Petersen, K.E. Silicon torsional scanning mirror. IBM J. Res. Dev. 1980, 24, 631–637. DOI: 10.1147/rd.245.0631.
  • Wu, M.C.; Solgaard, O.; Ford, J.E. Optical MEMS for lightwave communication. J. Lightwave Technol. 2006, 24, 4433–4454. DOI: 10.1109/JLT.2006.886405.
  • Zhou, G.; Lim, Z.H.; Qi, Y.; Chau, F.S.; Zhou, G. MEMS gratings and their applications. Int. J. Optomechatronics 2021, 15, 61–86. DOI: 10.1080/15599612.2021.1892248.
  • Ma, Y.; Dong, B.; Lee, C. Progress of infrared guided-wave nanophotonic sensors and devices. Nano Converg. 2020, 7, 12.
  • Jalali, B.; Fathpour, S. Silicon photonics. J. Lightwave Technol. 2006, 24, 4600–4615. DOI: 10.1109/JLT.2006.885782.
  • Gunn, C. CMOS photonics for high-speed interconnects. IEEE Micro 2006, 26, 58–66. DOI: 10.1109/MM.2006.32.
  • Lin, H.; Luo, Z.; Gu, T.; Kimerling, L.C.; Wada, K.; Agarwal, A.; Hu, J. Mid-infrared integrated photonics on silicon: A perspective. Nanophotonics 2017, 7, 393–420. DOI: 10.1515/nanoph-2017-0085.
  • Estevez, M.C.; Alvarez, M.; Lechuga, L.M. Integrated optical devices for lab-on-a-chip biosensing applications. Laser. Photon. Rev. 2012, 6, 463–487. DOI: 10.1002/lpor.201100025.
  • Du, H.; Chau, F.S.; Zhou, G. Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators. Micromachines 2016, 7, 69. DOI: 10.3390/mi7040069.
  • Shi, Q.; Dong, B.; He, T.; Sun, Z.; Zhu, J.; Zhang, Z.; Lee, C. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2020, 2, 1131–1162. DOI: 10.1002/inf2.12122.
  • Zhou, H.; Kropelnicki, P.; Lee, C. CMOS compatible midinfrared wavelength-selective thermopile for high temperature applications. J. Microelectromech. Syst. 2015, 24, 144–154. DOI: 10.1109/JMEMS.2014.2322675.
  • Guo, Q.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B.; Li, C.; Han, S.J.; Wang, H.; Xia, Q., Ma, T.P., Mueller, T.; Xia, F. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655. DOI: 10.1021/acs.nanolett.6b01977.
  • Koh, K.H.; Lee, C. A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage. J. Microelectromech. Syst. 2012, 21, 1124–1135. DOI: 10.1109/JMEMS.2012.2196497.
  • Han, S.; Seok, T.J.; Quack, N.; Yoo, B.-W.; Wu, M.C. Large-scale silicon photonic switches with movable directional couplers. Optica 2015, 2, 370–375. DOI: 10.1364/OPTICA.2.000370.
  • Ríos, C.; Youngblood, N.; Cheng, Z.; Le Gallo, M.; Pernice, W.H.P.; Wright, C.D.; Sebastian, A.; Bhaskaran, H. In-memory computing on a photonic platform. Sci. Adv. 2019, 5, eaau5759. DOI: 10.1126/sciadv.aau5759.
  • Dong, B.; Zhang, Z.; Shi, Q.; Wei, J.; Ma, Y.; Xiao, Z.; Lee, C. Biometrics-protected optical communication enabled by deep learning–enhanced triboelectric/photonic synergistic interface. Sci. Adv. 2022, 8, eabl9874. DOI: 10.1126/sciadv.abl9874.
  • Rogers, C.; Piggott, A.Y.; Thomson, D.J.; Wiser, R.F.; Opris, I.E.; Fortune, S.A.; Compston, A.J.; Gondarenko, A.; Meng, F.; Chen, X.; Reed, G.T.; Nicolaescu, R. A universal 3D imaging sensor on a silicon photonics platform. Nature 2021, 590, 256–261. DOI: 10.1038/s41586-021-03259-y.
  • Huang, L.; Dong, B.; Guo, X.; Chang, Y.; Chen, N.; Huang, X.; Liao, W.; Zhu, C.; Wang, H.; Lee, C.; Ang, K.-W. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 2019, 13, 913–921. DOI: 10.1021/acsnano.8b08758.
  • Li, W.; Wang, Z.; Feng, C.; Li, Q.; Yu, H. High sensitivity all-optical acoustic pressure sensor based on resonant micro-opto-mechanical cantilever with integrated rib waveguide. Sens. Actuat. A Phys. 2019, 285, 300–307. DOI: 10.1016/j.sna.2018.11.035.
  • Takahashi, K.; Oyama, H.; Misawa, N.; Okumura, K.; Ishida, M.; Sawada, K. Surface stress sensor using MEMS-based Fabry-Perot interferometer for label-free biosensing. Sens. Actuat. B Chem. 2013, 188, 393–399. DOI: 10.1016/j.snb.2013.06.106.
  • Westerveld, W.J.; Mahmud-Ul-Hasan, M.; Shnaiderman, R.; Ntziachristos, V.; Rottenberg, X.; Severi, S.; Rochus, V. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics 2021, 15, 341–345. DOI: 10.1038/s41566-021-00776-0.
  • Liu, W.; Ma, Y.; Liu, X.; Zhou, J.; Xu, C.; Dong, B.; Lee, C. Larger-than-unity external optical field confinement enabled by metamaterial-assisted comb waveguide for ultrasensitive long-wave infrared gas spectroscopy. Nano Lett. 2022, 22, 6112–6120. DOI: 10.1021/acs.nanolett.2c01198.
  • Mahmoud, M.; Mahmoud, A.; Cai, L.; Khan, M.; Mukherjee, T.; Bain, J.; Piazza, G. Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes. Opt. Express 2018, 26, 25060–25075. DOI: 10.1364/OE.26.025060.
  • Ma, Y.; Chang, Y.; Dong, B.; Wei, J.; Liu, W.; Lee, C. Heterogeneously integrated graphene/silicon/halide waveguide photodetectors toward chip-scale zero-bias long-wave infrared spectroscopic sensing. ACS Nano 2021, 15, 10084–10094. DOI: 10.1021/acsnano.1c01859.
  • Chen, W.C.; Lee, C.; Wu, C.Y.; Fang, W. A new latched 2 × 2 optical switch using bi-directional movable electrothermal H-beam actuators. Sens. Actuat. A Phys. 2005, 123-124, 563–569. DOI: 10.1016/j.sna.2005.04.033.
  • Rogalski, A. Infrared detectors: Status and trends. Prog. Quantum Electron. 2003, 27, 59–210. DOI: 10.1016/S0079-6727(02)00024-1.
  • Graf, A.; Arndt, M.; Sauer, M.; Gerlach, G. Review of micromachined thermopiles for infrared detection. Meas. Sci. Technol. 2007, 18, R59–R75. DOI: 10.1088/0957-0233/18/7/R01.
  • Xie, J.; Lee, C.; Wang, M.F.; Tsai, J.M. Microstructures for characterization of seebeck coefficient of doped polysilicon films. Microsyst. Technol. 2011, 17, 77–83. DOI: 10.1007/s00542-010-1183-9.
  • Wu, H.; Emadi, A.; Sarro, P.M.; de Graaf, G.; Wolffenbuttel, R.F. A surface micromachined thermopile detector array with an interference-based absorber. J. Micromech. Microeng. 2011, 21, 074009. DOI: 10.1088/0960-1317/21/7/074009.
  • Kumar, R.T.R.; Karunagaran, B.; Mangalaraj, D.; Narayandass, S.K.; Manoravi, P.; Joseph, M.; Gopal, V. Study of a pulsed laser deposited vanadium oxide based microbolometer array. Smart Mater. Struct. 2003, 12, 188–192. DOI: 10.1088/0964-1726/12/2/305.
  • Schimert, T.; Hanson, C.; Brady, J.; Fagan, T.; Taylor, M.; McCardel, W.; Gooch, R.; Gohlke, M.; Syllaios, A.J. Advances in small-pixel, large-format α-Si bolometer arrays. Proc. SPIE 2009, 7298, 72980T. DOI: 10.1117/12.818576.
  • Yadav, P.V.K.; Yadav, I.; Ajitha, B.; Rajasekar, A.; Gupta, S.; Ashok Kumar Reddy, Y. Advancements of uncooled infrared microbolometer materials: A review. Sens. Actuat. A Phys. 2022, 342, 113611. DOI: 10.1016/j.sna.2022.113611.
  • Kesim, Y.E.; Battal, E.; Tanrikulu, M.Y.; Okyay, A.K. An all-ZnO microbolometer for infrared imaging. Infrared. Phys. Technol. 2014, 67, 245–249. DOI: 10.1016/j.infrared.2014.07.023.
  • Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Ryabova, N.; Yurchenko, S.O.; Mitin, V.; Shur, M.S. Graphene terahertz uncooled bolometers. J. Phys. D Appl. Phys. 2013, 46, 065102. DOI: 10.1088/0022-3727/46/6/065102.
  • Banerjee, A.; Satoh, H.; Elamaran, D.; Sharma, Y.; Hiromoto, N.; Inokawa, H. Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor. J. Appl. Phys. 2019, 125, 214502.
  • Liu, D.; Lu, W.; Lei, S.; Chen, Z. Low-noise readout circuit for thermo-electrical cooler-less uncooled microbolometer infrared imager. Electron. Lett 2016, 52, 705–706. DOI: 10.1049/el.2015.3407.
  • Ambrosio, R.; Moreno, M.; Mireles, J.; Torres, A.; Kosarev, A.; Heredia, A. An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys. Phys. Status Solidi (c) 2010, 7, 1180–1183. DOI: 10.1002/pssc.200982781.
  • Judy, J.W. Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart Mater. Struct. 2001, 10, 1115–1134. DOI: 10.1088/0964-1726/10/6/301.
  • Kimata, M. Uncooled infrared focal plane arrays. IEEJ Trans. Electr. Eng. 2018, 13, 4–12. DOI: 10.1002/tee.22563.
  • Yu, L.; Guo, Y.; Zhu, H.; Luo, M.; Han, P.; Ji, X. Low-cost microbolometer type infrared detectors. Micromachines 2020, 11, 800. DOI: 10.3390/mi11090800.
  • Chen, C.; Li, C.; Min, S.; Guo, Q.; Xia, Z.; Liu, D.; Ma, Z.; Xia, F. Ultrafast silicon nanomembrane microbolometer for long-wavelength infrared light detection. Nano Lett. 2021, 21, 8385–8392. DOI: 10.1021/acs.nanolett.1c02972.
  • Vicarelli, L.; Tredicucci, A.; Pitanti, A. Micromechanical bolometers for subterahertz detection at room temperature. ACS Photonics 2022, 9, 360–367. DOI: 10.1021/acsphotonics.1c01273.
  • Zhang, X.; Li, H.; Wei, Z.; Qi, L. Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range. Opt. Mater. Express 2017, 7, 3294. DOI: 10.1364/OME.7.003294.
  • Song, Z.; Zhang, J. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt. Express 2020, 28, 12487–12497. DOI: 10.1364/OE.391066.
  • Sun, C.; Shi, Q.; Hasan, D.; Yazici, M.S.; Zhu, M.; Ma, Y.; Dong, B.; Liu, Y.; Lee, C. Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors. Nano Energy 2019, 58, 612–623. DOI: 10.1016/j.nanoen.2019.01.096.
  • Chen, X.; Liu, X.; Wang, T.; Le, X.; Ma, F.; Lee, C.; Xie, J. Piezoelectric micromachined ultrasonic transducers with low thermoelastic dissipation and high quality factor. J. Micromech. Microeng. 2018, 28, 057001. DOI: 10.1088/1361-6439/aab1bc.
  • Wang, T.; Kobayashi, T.; Lee, C. Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air. Micro Nano Lett. 2016, 11, 558–562. DOI: 10.1049/mnl.2016.0207.
  • Hui, Y.; Rinaldi, M. Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element. Appl. Phys. Lett. 2013, 102, 093501.
  • Ren, Z.; Chang, Y.; Ma, Y.; Shih, K.; Dong, B.; Lee, C. Leveraging of MEMS technologies for optical metamaterials applications. Adv. Opt. Mater. 2020, 8, 1900653. DOI: 10.1002/adom.201900653.
  • Dong, B.; Ma, Y.; Ren, Z.; Lee, C. Recent progress in nanoplasmonics-based integrated optical micro/nano-systems. J. Phys. D Appl. Phys. 2020, 53, 213001. DOI: 10.1088/1361-6463/ab77db.
  • Hui, Y.; Gomez-Diaz, J.S.; Qian, Z.; Alù, A.; Rinaldi, M. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat. Commun. 2016, 7, 11249. DOI: 10.1038/ncomms11249.
  • Shi, Q.; Yang, Y.; Sun, Z.; Lee, C. Progress of advanced devices and internet of things systems as enabling technologies for smart homes and health care. ACS Mater. Au 2022, 2, 394–435. DOI: 10.1021/acsmaterialsau.2c00001.
  • Qian, Z.; Kang, S.; Rajaram, V.; Cassella, C.; McGruer, N.E.; Rinaldi, M. Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches. Nat. Nanotechnol. 2017, 12, 969–973. DOI: 10.1038/nnano.2017.147.
  • Liu, J.; Xia, F.; Xiao, D.; García de Abajo, F.J.; Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 2020, 19, 830–837. DOI: 10.1038/s41563-020-0715-7.
  • Michel, J.; Liu, J.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photon. 2010, 4, 527–534. DOI: 10.1038/nphoton.2010.157.
  • Liu, J.; Cannon, D.D.; Wada, K.; Ishikawa, Y.; Jongthammanurak, S.; Danielson, D.T.; Michel, J.; Kimerling, L.C. Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl. Phys. Lett 2005, 87, 011110.
  • Loh, T.H.; Nguyen, H.S.; Tung, C.H.; Trigg, A.D.; Lo, G.Q.; Balasubramanian, N.; Kwong, D.L.; Tripathy, S. Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 2007, 90, 092108.
  • Jutzi, M.; Berroth, M.; Wohl, G.; Oehme, M.; Kasper, E. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photon. Technol. Lett. 2005, 17, 1510–1512. DOI: 10.1109/LPT.2005.848546.
  • Rouvière, M.; Vivien, L.; Le Roux, X.; Mangeney, J.; Crozat, P.; Hoarau, C.; Cassan, E.; Pascal, D.; Laval, S.; Fédéli, J.-M.; Damlencourt, J.-F.; Hartmann, J.M.; Kolev, S. Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55μm operation. Appl. Phys. Lett. 2005, 87, 231109.
  • Oehme, M.; Werner, J.; Kasper, E.; Jutzi, M.; Berroth, M. High bandwidth Ge p-i-n photodetector integrated on Si. Appl. Phys. Lett. 2006, 89, 071117.
  • Loh, T.H.; Nguyen, H.S.; Murthy, R.; Yu, M.B.; Loh, W.Y.; Lo, G.Q.; Balasubramanian, N.; Kwong, D.L.; Wang, J.; Lee, S.J. Selective epitaxial germanium on silicon-on-insulator high speed photodetectors using low-temperature ultrathin Si0.8 Ge0.2 buffer. Appl. Phys. Lett. 2007, 91, 2005–2008.
  • Kang, Y.; Liu, H.-D.; Morse, M.; Paniccia, M.J.; Zadka, M.; Litski, S.; Sarid, G.; Pauchard, A.; Kuo, Y.-H.; Chen, H.-W.; Zaoui, W.S.; Bowers, J.E.; Beling, A.; McIntosh, D.C.; Zheng, X.; Campbell, J.C. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photon. 2009, 3, 59–63. DOI: 10.1038/nphoton.2008.247.
  • Vines, P.; Kuzmenko, K.; Kirdoda, J.; Dumas, D.C.S.; Mirza, M.M.; Millar, R.W.; Paul, D.J.; Buller, G.S. High performance planar germanium-on-silicon single-photon avalanche diode detectors. Nat. Commun. 2019, 10, 1086. DOI: 10.1038/s41467-019-08830-w.
  • Li, X.; Peng, L.; Liu, Z.; Liu, X.; Zheng, J.; Zuo, Y.; Xue, C.; Cheng, B. High-power back-to-back dual-absorption germanium photodetector. Opt. Lett. 2020, 45, 1358–1361. DOI: 10.1364/OL.388011.
  • Tran, H.; Pham, T.; Margetis, J.; Zhou, Y.; Dou, W.; Grant, P.C.; Grant, J.M.; Al-Kabi, S.; Sun, G.; Soref, R.A.; Tolle, J.; Zhang, Y.H.; Du, W.; Li, B.; Mortazavi, M.; Yu, S.Q. Si-based GeSn photodetectors toward mid-infrared imaging applications. ACS Photon. 2019, 6, 2807–2815. DOI: 10.1021/acsphotonics.9b00845.
  • Wang, J.; Lee, S. Ge-photodetectors for Si-based optoelectronic integration. Sensors 2011, 11, 696–718. DOI: 10.3390/s110100696.
  • Benedikovic, D.; Virot, L.; Aubin, G.; Hartmann, J.-M.; Amar, F.; Le Roux, X.; Alonso-Ramos, C.; Cassan, É.; Marris-Morini, D.; Fédéli, J.-M.; Boeuf, F.; Szelag, B.; Vivien, L. Silicon–germanium receivers for short-wave-infrared optoelectronics and communications. Nanophotonics 2021, 10, 1059–1079. DOI: 10.1515/nanoph-2020-0547.
  • Moutanabbir, O.; Assali, S.; Gong, X.; O’Reilly, E.; Broderick, C.A.; Marzban, B.; Witzens, J.; Du, W.; Yu, S.-Q.; Chelnokov, A.; Buca, D.; Nam, D. Monolithic infrared silicon photonics: The rise of (Si)GeSn semiconductors. Appl. Phys. Lett. 2021, 118, 110502.
  • Rogalski, A.; Martyniuk, P.; Kopytko, M. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Appl. Phys. Rev. 2017, 4, 031304.
  • Ren, A.; Yuan, L.; Xu, H.; Wu, J.; Wang, Z. Recent progress of III–V quantum dot infrared photodetectors on silicon. J. Mater. Chem. C 2019, 7, 14441–14453. DOI: 10.1039/C9TC05738B.
  • Wu, J.; Jiang, Q.; Chen, S.; Tang, M.; Mazur, Y.I.; Maidaniuk, Y.; Benamara, M.; Semtsiv, M.P.; Masselink, W.T.; Sablon, K.A.; Salamo, G.J.; Liu, H. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates. ACS Photon. 2016, 3, 749–753. DOI: 10.1021/acsphotonics.6b00076.
  • Jia, B.W.; Tan, K.H.; Loke, W.K.; Wicaksono, S.; Lee, K.H.; Yoon, S.F. Monolithic integration of InSb photodetector on silicon for mid-infrared silicon photonics. ACS Photon. 2018, 5, 1512–1520. DOI: 10.1021/acsphotonics.7b01546.
  • Delli, E.; Letka, V.; Hodgson, P.D.; Repiso, E.; Hayton, J.P.; Craig, A.P.; Lu, Q.; Beanland, R.; Krier, A.; Marshall, A.R.J.; Carrington, P.J. Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. ACS Photon. 2019, 6, 538–544. DOI: 10.1021/acsphotonics.8b01550.
  • Ren, Z.; Xu, J.; Le, X.; Lee, C. Heterogeneous wafer bonding technology and thin-film transfer technology-enabling platform for the next generation applications beyond 5G. Micromachines 2021, 12, 946. DOI: 10.3390/mi12080946.
  • Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 2009, 105, 091101.
  • Norton, P. HgCdTe infrared detectors. Opto-Electron. Rev. 2002, 10, 159–174.
  • Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 2014, 8, 899–907. DOI: 10.1038/nphoton.2014.271.
  • Bullock, J.; Amani, M.; Cho, J.; Chen, Y.Z.; Ahn, G.H.; Adinolfi, V.; Shrestha, V.R.; Gao, Y.; Crozier, K.B.; Chueh, Y.L.; Javey, A. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photon 2018, 12, 601–607. DOI: 10.1038/s41566-018-0239-8.
  • Liu, H.; Meng, J.; Zhang, X.; Chen, Y.; Yin, Z.; Wang, D.; Wang, Y.; You, J.; Gao, M.; Jin, P. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale 2018, 10, 5559–5565. DOI: 10.1039/c7nr09438h.
  • Tan, B.; Yang, H.; Hu, Y.; Gao, F.; Wang, L.; Dai, M.; Zhang, S.; Shang, H.; Chen, H.; Hu, P. Synthesis of high-quality multilayer hexagonal boron nitride films on Au foils for ultrahigh rejection ratio solar-blind photodetection. ACS Appl. Mater. Interfaces 2020, 12, 28351–28359. DOI: 10.1021/acsami.0c00449.
  • Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. DOI: 10.1016/j.mattod.2016.10.002.
  • Wang, J.; Fang, H.; Wang, X.; Chen, X.; Lu, W.; Hu, W. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894. DOI: 10.1002/smll.201700894.
  • Long, M.; Gao, A.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y.; Liu, E.; Chen, X.; Lu, W.; Nilges, T.; Xu, J.; Wang, X.; Hu, W.; Miao, F. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589. DOI: 10.1126/sciadv.1700589.
  • Yuan, S.; Shen, C.; Deng, B.; Chen, X.; Guo, Q.; Ma, Y.; Abbas, A.; Liu, B.; Haiges, R.; Ott, C.; Nilges, T.; Watanabe, K.; Taniguchi, T.; Sinai, O.; Naveh, D.; Zhou, C.; Xia, F. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 2018, 18, 3172–3179. DOI: 10.1021/acs.nanolett.8b00835.
  • Chen, X.; Lu, X.; Deng, B.; Sinai, O.; Shao, Y.; Li, C.; Yuan, S.; Tran, V.; Watanabe, K.; Taniguchi, T.; Naveh, D.; Yang, L.; Xia, F. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672. DOI: 10.1038/s41467-017-01978-3.
  • Hsu, A.L.; Herring, P.K.; Gabor, N.M.; Ha, S.; Shin, Y.C.; Song, Y.; Chin, M.; Dubey, M.; Chandrakasan, A.P.; Kong, J.; Jarillo-Herrero, P.; Palacios, T. Graphene-based thermopile for thermal imaging applications. Nano Lett. 2015, 15, 7211–7216. DOI: 10.1021/acs.nanolett.5b01755.
  • Cai, X.; Sushkov, A.B.; Suess, R.J.; Jadidi, M.M.; Jenkins, G.S.; Nyakiti, L.O.; Myers-Ward, R.L.; Li, S.; Yan, J.; Gaskill, D.K.; Murphy, T.E.; Drew, H.D.; Fuhrer, M.S. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 2014, 9, 814–819. DOI: 10.1038/nnano.2014.182.
  • Dai, M.; Wang, C.; Ye, M.; Zhu, S.; Han, S.; Sun, F.; Chen, W.; Jin, Y.; Chua, Y.; Wang, Q.J. High-performance, polarization-sensitive, long-wave infrared photodetection via photothermoelectric effect with asymmetric Van Der Waals contacts. ACS Nano 2022, 16, 295–305. DOI: 10.1021/acsnano.1c06286.
  • Dong, Z.; Yu, W.; Zhang, L.; Mu, H.; Xie, L.; Li, J.; Zhang, Y.; Huang, L.; He, X.; Wang, L.; Lin, S.; Zhang, K. Highly efficient, ultrabroad PdSe2 phototransistors from visible to terahertz driven by mutiphysical mechanism. ACS Nano 2021, 15, 20403–20413. DOI: 10.1021/acsnano.1c08756.
  • Sefidmooye Azar, N.; Bullock, J.; Shrestha, V.R.; Balendhran, S.; Yan, W.; Kim, H.; Javey, A.; Crozier, K.B. Long-wave infrared photodetectors based on 2D platinum diselenide atop optical cavity substrates. ACS Nano 2021, 15, 6573–6581. DOI: 10.1021/acsnano.0c09739.
  • Xu, H.; Guo, C.; Zhang, J.; Guo, W.; Kuo, C.; Lue, C.S.; Hu, W.; Wang, L.; Chen, G.; Politano, A.; Chen, X.; Lu, W. PtTe 2‐based type‐II dirac semimetal and its Van Der Waals heterostructure for sensitive room temperature terahertz photodetection. Small 2019, 15, e1903362. DOI: 10.1002/smll.201903362.
  • Zeng, L.; Wu, D.; Jie, J.; Ren, X.; Hu, X.; Lau, S.P.; Chai, Y.; Tsang, Y.H. Van Der Waals epitaxial growth of mosaic‐like 2D platinum ditelluride layers for room‐temperature mid‐infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, e2004412. DOI: 10.1002/adma.202004412.
  • Lai, J.; Liu, X.; Ma, J.; Wang, Q.; Zhang, K.; Ren, X.; Liu, Y.; Gu, Q.; Zhuo, X.; Lu, W.; Wu, Y.; Li, Y.; Feng, J.; Zhou, S.; Chen, J.-H.; Sun, D. Anisotropic broadband photoresponse of layered type-II Weyl semimetal MoTe 2. Adv. Mater. 2018, 30, e1707152.
  • Yao, Y.; Shankar, R.; Rauter, P.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. 2014, 14, 3749–3754. DOI: 10.1021/nl500602n.
  • Wei, J.; Li, Y.; Wang, L.; Liao, W.; Dong, B.; Xu, C.; Zhu, C.; Ang, K.; Qiu, C.; Lee, C. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 2020, 11, 6404. DOI: 10.1038/s41467-020-20115-1.
  • Wei, J.; Xu, C.; Dong, B.; Qiu, C.-W.; Lee, C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photon. 2021, 15, 614–621. DOI: 10.1038/s41566-021-00819-6.
  • Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. DOI: 10.1038/nature26160.
  • Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608. DOI: 10.1126/science.aaw3780.
  • Ma, C.; Wang, Q.; Mills, S.; Chen, X.; Deng, B.; Yuan, S.; Li, C.; Watanabe, K.; Taniguchi, T.; Du, X.; Zhang, F.; Xia, F. Moiré band topology in twisted bilayer graphene. Nano Lett. 2020, 20, 6076–6083. DOI: 10.1021/acs.nanolett.0c02131.
  • Wu, F.; Lovorn, T.; Tutuc, E.; Martin, I.; MacDonald, A.H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 2019, 122, 086402. DOI: 10.1103/PhysRevLett.122.086402.
  • Ni, G.X.; Wang, H.; Jiang, B.-Y.; Chen, L.X.; Du, Y.; Sun, Z.Y.; Goldflam, M.D.; Frenzel, A.J.; Xie, X.M.; Fogler, M.M.; Basov, D.N. Soliton superlattices in twisted hexagonal boron nitride. Nat. Commun. 2019, 10, 4360. DOI: 10.1038/s41467-019-12327-x.
  • Hu, G.; Ou, Q.; Si, G.; Wu, Y.; Wu, J.; Dai, Z.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q.; Qiu, C.W.; Alù, A. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209–213. DOI: 10.1038/s41586-020-2359-9.
  • Deng, B.; Ma, C.; Wang, Q.; Yuan, S.; Watanabe, K.; Taniguchi, T.; Zhang, F.; Xia, F. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photon. 2020, 14, 549–553. DOI: 10.1038/s41566-020-0644-7.
  • Ma, C.; Yuan, S.; Cheung, P.; Watanabe, K.; Taniguchi, T.; Zhang, F.; Xia, F. Intelligent infrared sensing enabled by tunable Moiré quantum geometry. Nature 2022, 604, 266–272. DOI: 10.1038/s41586-022-04548-w.
  • Vivien, L.; Rouvière, M.; Fédéli, J.-M.; Marris-Morini, D.; Damlencourt, J.F.; Mangeney, J.; Crozat, P.; El Melhaoui, L.; Cassan, E.; Le Roux, X.; Pascal, D.; Laval, S. High speed and high responsivity germanium photodetector integrated in a silicon-on-insulator microwaveguide. Opt. Express 2007, 15, 9843–9848. DOI: 10.1364/oe.15.009843.
  • Feng, D.; Liao, S.; Dong, P.; Feng, N.-N.; Liang, H.; Zheng, D.; Kung, C.-C.; Fong, J.; Shafiiha, R.; Cunningham, J.; Krishnamoorthy, A.V.; Asghari M. High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide. Appl. Phys. Lett. 2009, 95, 261105.
  • Ahn, D.; Hong, C.; Liu, J.; Giziewicz, W.; Beals, M.; Kimerling, L.C.; Michel, J.; Chen, J.; Kärtner, F.X. High performance, waveguide integrated Ge photodetectors. Opt. Express 2007, 15, 3916–3921. DOI: 10.1364/oe.15.003916.
  • Yin, T.; Cohen, R.; Morse, M.M.; Sarid, G.; Chetrit, Y.; Rubin, D.; Paniccia, M.J. 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt. Express 2007, 15, 13965–13971. DOI: 10.1364/oe.15.013965.
  • Assefa, S.; Xia, F.; Vlasov, Y.A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 2010, 464, 80–84. DOI: 10.1038/nature08813.
  • Huang, Y.-H.; Chang, G.-E.; Li, H.; Cheng, H.H. Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer. Opt. Lett. 2017, 42, 1652–1655. DOI: 10.1364/OL.42.001652.
  • Hattasan, N.; Gassenq, A.; Cerutti, L.; Rodriguez, J.-B.; Tournie, E.; Roelkens, G. Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit. IEEE Photon. Technol. Lett. 2011, 23, 1760–1762. DOI: 10.1109/LPT.2011.2169244.
  • Ryckeboer, E.; Gassenq, A.; Muneeb, M.; Hattasan, N.; Pathak, S.; Cerutti, L.; Rodriguez, J.B.; Tournié, E.; Bogaerts, W.; Baets, R.; Roelkens, G. Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Opt. Express 2013, 21, 6101–6108. DOI: 10.1364/OE.21.006101.
  • Muneeb, M.; Ruocco, A.; Malik, A.; Pathak, S.; Ryckeboer, E.; Sanchez, D.; Cerutti, L.; Rodriguez, J.B.; Tournié, E.; Bogaerts, W.; Smit, M.K.; Roelkens, G. Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring. Opt. Express 2014, 22, 27300–27308. DOI: 10.1364/OE.22.027300.
  • Wang, R.; Sprengel, S.; Muneeb, M.; Boehm, G.; Baets, R.; Amann, M.-C.; Roelkens, G. 2 μm Wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. Opt. Express 2015, 23, 26834–26841. DOI: 10.1364/OE.23.026834.
  • Roelkens, G.; Dave, U.; Gassenq, A.; Hattasan, N.; Chen Hu, Kuyken, B.; Leo, F.; Malik, A.; Muneeb, M.; Ryckeboer, E.; Sanchez, D.; Uvin, S.; Wang, R.; Hens, Z.; Baets, R.; Shimura, Y.; Gencarelli, F.; Vincent, B.; Loo, R.; Van Campenhout, J.; Cerutti, L.; Rodriguez, J.-B.; Tournie, E.; Xia, C.; Nedeljkovic, M.; Mashanovich, G.; Li, S.; Healy, N.; Peacock, A.C.; Xiaoping, L.; Osgood, R.; Green, W.M.J. Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 8201511.
  • Grote, R.R.; Souhan, B.; Ophir, N.; Driscoll, J.B.; Bergman, K.; Bahkru, H.; Green, W.M.J.; Osgood, R.M. Extrinsic photodiodes for integrated mid-infrared silicon photonics. Optica 2014, 1, 264–267. DOI: 10.1364/OPTICA.1.000264.
  • Souhan, B.; Grote, R.R.; Chen, C.P.; Huang, H.-C.; Driscoll, J.B.; Lu, M.; Stein, A.; Bakhru, H.; Bergman, K.; Green, W.M.J.; Osgood, R.M. Si+-implanted Si-wire waveguide photodetectors for the mid-infrared. Opt. Express 2014, 22, 27415–27424. DOI: 10.1364/OE.22.027415.
  • Ackert, J.J.; Thomson, D.J.; Shen, L.; Peacock, A.C.; Jessop, P.E.; Reed, G.T.; Mashanovich, G.Z.; Knights, A.P. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat. Photon. 2015, 9, 393–396. DOI: 10.1038/nphoton.2015.81.
  • Gan, X.; Shiue, R.J.; Gao, Y.; Meric, I.; Heinz, T.F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photon. 2013, 7, 883–887. DOI: 10.1038/nphoton.2013.253.
  • Pospischil, A.; Humer, M.; Furchi, M.M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photon. 2013, 7, 892–896. DOI: 10.1038/nphoton.2013.240.
  • Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photon. 2013, 7, 888–891. DOI: 10.1038/nphoton.2013.241.
  • Schuler, S.; Schall, D.; Neumaier, D.; Dobusch, L.; Bethge, O.; Schwarz, B.; Krall, M.; Mueller, T. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector. Nano Lett. 2016, 16, 7107–7112. DOI: 10.1021/acs.nanolett.6b03374.
  • Muench, J.E.; Ruocco, A.; Giambra, M.A.; Miseikis, V.; Zhang, D.; Wang, J.; Watson, H.F.Y.; Park, G.C.; Akhavan, S.; Sorianello, V.; Midrio, M.; Tomadin, A.; Coletti, C.; Romagnoli, M.; Ferrari, A.C.; Goykhman, I. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 2019, 19, 7632–7644. DOI: 10.1021/acs.nanolett.9b02238.
  • Guo, J.; Li, J.; Liu, C.; Yin, Y.; Wang, W.; Ni, Z.; Fu, Z.; Yu, H.; Xu, Y.; Shi, Y.; Ma, Y., Gao, S., Tong, L.; Dai, D. High-performance silicon − graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci. Appl. 2020, 9, 29.
  • Schuler, S.; Muench, J.E.; Ruocco, A.; Balci, O.; Thourhout, D.V.; Sorianello, V.; Romagnoli, M.; Watanabe, K.; Taniguchi, T.; Goykhman, I.; Ferrari, A C., Mueller, T. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun. 2021, 12, 3733. DOI: 10.1038/s41467-021-23436-x.
  • Bie, Y.Q.; Grosso, G.; Heuck, M.; Furchi, M.M.; Cao, Y.; Zheng, J.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D.K.; Taniguchi, T.; Watanabe, K.; Kong, J.; Englund, D.; Jarillo-Herrero, P. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124–1129. DOI: 10.1038/nnano.2017.209.
  • Maiti, R.; Patil, C.; Saadi, M.A.S.R.; Xie, T.; Azadani, J.G.; Uluutku, B.; Amin, R.; Briggs, A.F.; Miscuglio, M.; Van Thourhout, D.; Solares, S.D.; Low, T.; Agarwal, R.; Bank, S.R.; Sorger, V.J. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photon. 2020, 14, 578–584. DOI: 10.1038/s41566-020-0647-4.
  • Parhizkar, S.; Prechtl, M.; Giesecke, A.L.; Suckow, S.; Wahl, S.; Lukas, S.; Hartwig, O.; Negm, N.; Quellmalz, A.; Gylfason, K.; Schall, D.; Wuttig, M.; Duesberg, G.S.; Lemme, M.C. Two-dimensional platinum diselenide waveguide-integrated infrared photodetectors. ACS Photon. 2022, 9, 859–867. DOI: 10.1021/acsphotonics.1c01517.
  • Youngblood, N.; Chen, C.; Koester, S.J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 2015, 9, 247–252. DOI: 10.1038/nphoton.2015.23.
  • Chen, C.; Youngblood, N.; Peng, R.; Yoo, D.; Mohr, D.A.; Johnson, T.W.; Oh, S.H.; Li, M. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett. 2017, 17, 985–991. DOI: 10.1021/acs.nanolett.6b04332.
  • Yin, Y.; Cao, R.; Guo, J.; Liu, C.; Li, J.; Feng, X.; Wang, H.; Du, W.; Qadir, A.; Zhang, H.; Ma, Y.; Gao, S.; Xu, Y.; Shi, Y.; Tong, L.; Dai, D. High‐speed and high‐responsivity hybrid silicon/black‐phosphorus waveguide photodetectors at 2 µm. Laser Photon. Rev 2019, 13, 1900032.
  • Flöry, N.; Ma, P.; Salamin, Y.; Emboras, A.; Taniguchi, T.; Watanabe, K.; Leuthold, J.; Novotny, L. Waveguide-integrated Van Der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 2020, 15, 118–124. DOI: 10.1038/s41565-019-0602-z.
  • Tian, R.; Gan, X.; Li, C.; Chen, X.; Hu, S.; Gu, L.; Van Thourhout, D.; Castellanos-Gomez, A.; Sun, Z.; Zhao, J. Chip-integrated Van Der Waals PN heterojunction photodetector with low dark current and high responsivity. Light Sci. Appl. 2022, 11, 101.
  • Xia, Z.; Song, H.; Kim, M.; Zhou, M.; Chang, T.-H.; Liu, D.; Yin, X.; Xiong, K.; Mi, H.; Wang, X.; Xia, F.; Yu, Z.; Ma, Z. (Jack); Gan, Q. Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities. Sci. Adv. 2017, 3, e1602783. DOI: 10.1126/sciadv.1602783.
  • Ma, Y.; Dong, B.; Wei, J.; Chang, Y.; Huang, L.; Ang, K.; Lee, C. High‐responsivity mid‐infrared black phosphorus slow light waveguide photodetector. Adv. Opt. Mater. 2020, 8, 2000337. DOI: 10.1002/adom.202000337.
  • Ma, Y.; Dong, B.; Li, B.; Wei, J.; Chang, Y.; Ho, C.P.; Lee, C. Mid-infrared slow light engineering and tuning in 1-D grating waveguide. IEEE J. Select. Topics Quantum Electron. 2018, 24, 1–8. DOI: 10.1109/JSTQE.2018.2827659.
  • Ma, Y.; Dong, B.; Li, B.; Ang, K.-W.; Lee, C. Dispersion engineering and thermo-optic tuning in mid-infrared photonic crystal slow light waveguides on silicon-on-insulator. Opt. Lett. 2018, 43, 5504–5507. DOI: 10.1364/OL.43.005504.
  • Tian, R.; Gu, L.; Ji, Y.; Li, C.; Chen, Y.; Hu, S.; Li, Z.; Gan, X.; Zhao, J. Black phosphorus photodetector enhanced by a planar photonic crystal cavity. ACS Photon. 2021, 8, 3104–3110. DOI: 10.1021/acsphotonics.1c01168.
  • Ma, P.; Salamin, Y.; Baeuerle, B.; Josten, A.; Heni, W.; Emboras, A.; Leuthold, J. Plasmonically enhanced graphene photodetector featuring 100 gbit/s data reception, high responsivity, and compact size. ACS Photon. 2019, 6, 154–161. DOI: 10.1021/acsphotonics.8b01234.
  • Liu, C.; Guo, J.; Yu, L.; Xiang, Y.; Xiang, H.; Li, J.; Dai, D. High-speed and high-responsivity silicon/black-phosphorus hybrid plasmonic waveguide avalanche photodetector. ACS Photon. 2022, 9, 1764–1774. DOI: 10.1021/acsphotonics.2c00244.
  • Ding, Y.; Cheng, Z.; Zhu, X.; Yvind, K.; Dong, J.; Galili, M.; Hu, H.; Mortensen, N.A.; Xiao, S.; Oxenløwe, L.K. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics 2020, 9, 317–325. DOI: 10.1515/nanoph-2019-0167.
  • Ma, Z.; Kikunaga, K.; Wang, H.; Sun, S.; Amin, R.; Maiti, R.; Tahersima, M.H.; Dalir, H.; Miscuglio, M.; Sorger, V.J. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photon. 2020, 7, 932–940. DOI: 10.1021/acsphotonics.9b01452.
  • Liu, X.; Liu, W.; Ren, Z.; Ma, Y.; Dong, B.; Zhou, G.; Lee, C. Progress of optomechanical micro/nano sensors : A review. Int. J. Optomechatronics 2021, 15, 120–159. DOI: 10.1080/15599612.2021.1986612.
  • Qiao, Q.; Xia, J.; Lee, C.; Zhou, G. Applications of photonic crystal nanobeam cavities for sensing. Micromachines 2018, 9, 541. DOI: 10.3390/mi9110541.
  • Kim, D.; Hall, N.A. Towards a sub 15-dBA optical micromachined microphone. J. Acoust. Soc. Am. 2014, 135, 2664–2673. DOI: 10.1121/1.4871181.
  • Hall, N.A.; Okandan, M.; Littrell, R.; Serkland, D.K.; Keeler, G.A.; Peterson, K.; Bicen, B.; Garcia, C.T.; Degertekin, F.L. Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation. J. Microelectromech. Syst. 2008, 17, 37–44. DOI: 10.1109/JMEMS.2007.910243.
  • Bicen, B.; Jolly, S.; Jeelani, K.; Garcia, C.T.; Hall, N.A.; Degertekin, F.L.; Su, Q.; Cui, W.; Miles, R.N. Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms. IEEE Sensors J. 2009, 9, 1933–1941. DOI: 10.1109/JSEN.2009.2031810.
  • Zinoviev, K.; Dominguez, C.; Plaza, J.A.; Busto, V.J.C.; Lechuga, L.M. A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces. J. Lightwave Technol. 2006, 24, 2132–2138. DOI: 10.1109/JLT.2006.872315.
  • Ollier, E.; Philippe, P.; Chabrol, C.; Mottier, P. Micro-opto-mechanical vibration sensor integrated on silicon. J. Lightwave Technol 1999, 17, 26–29. DOI: 10.1109/50.737417.
  • Yao, M.; Zhang, Y.; Ouyang, X.; Ping Zhang, A.; Tam, H.-Y.; Wai, P.K.A. Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator. Opt. Lett. 2020, 45, 3516–3519. DOI: 10.1364/OL.393900.
  • Chen, M. q.; Zhao, Y.; Wei, H. m.; Zhu, C. l.; Krishnaswamy, S. 3D printed castle style Fabry-Perot microcavity on optical fiber tip as a highly sensitive humidity sensor. Sens. Actuat. B Chem. 2021, 328, 128981. DOI: 10.1016/j.snb.2020.128981.
  • Wu, G.; Datar, R.H.; Hansen, K.M.; Thundat, T.; Cote, R.J.; Majumdar, A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 2001, 19, 856–860. DOI: 10.1038/nbt0901-856.
  • Fritz, J.; Baller, M.K.; Lang, H.P.; Rothuizen, H.; Vettiger, P.; Meyer, E.; Güntherodt, H.J.; Gerber, C.; Gimzewski, J.K. Translating biomolecular recognition into nanomechanics. Science 2000, 288, 316–318. DOI: 10.1126/science.288.5464.316.
  • McKendry, R.; Zhang, J.; Arntz, Y.; Strunz, T.; Hegner, M.; Lang, H.P.; Baller, M.K.; Certa, U.; Meyer, E.; Güntherodt, H.J.; Gerber, C. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 9783–9788. DOI: 10.1073/pnas.152330199.
  • Zhang, J.; Lang, H.P.; Huber, F.; Bietsch, A.; Grange, W.; Certa, U.; Mckendry, R.; Güntherodt, H.-J.; Hegner, M.; Gerber, C. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 2006, 1, 214–220. DOI: 10.1038/nnano.2006.134.
  • Luo, J.; Liu, S.; Chen, P.; Lu, S.; Zhang, Q.; Chen, Y.; Du, B.; Tang, J.; He, J.; Liao, C.; Wang, Y. Fiber optic hydrogen sensor based on a Fabry–Perot interferometer with a fiber Bragg grating and a nanofilm. Lab Chip 2021, 21, 1752–1758. DOI: 10.1039/d1lc00012h.
  • Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. DOI: 10.1103/RevModPhys.86.1391.
  • Krause, A.G.; Winger, M.; Blasius, T.D.; Lin, Q.; Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 2012, 6, 768–772. DOI: 10.1038/nphoton.2012.245.
  • Zhou, F.; Bao, Y.; Madugani, R.; Long, D.A.; Gorman, J.J.; LeBrun, T.W. Broadband thermomechanically limited sensing with an optomechanical accelerometer. Optica 2021, 8, 350–356. DOI: 10.1364/OPTICA.413117.
  • Davuluri, S.; Li, K.; Li, Y. Gyroscope with two-dimensional optomechanical mirror. New. J. Phys. 2017, 19, 113004. DOI: 10.1088/1367-2630/aa8afb.
  • He, L.; Li, H.; Li, M. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Sci. Adv. 2016, 2, e1600485. DOI: 10.1126/sciadv.1600485.
  • Fogliano, F.; Besga, B.; Reigue, A.; Heringlake, P.; Mercier de Lépinay, L.; Vaneph, C.; Reichel, J.; Pigeau, B.; Arcizet, O. Mapping the cavity optomechanical interaction with subwavelength-sized ultrasensitive nanomechanical force sensors. Phys. Rev. X 2021, 11, 021009. DOI: 10.1103/PhysRevX.11.021009.
  • Fogliano, F.; Besga, B.; Reigue, A.; Mercier de Lépinay, L.; Heringlake, P.; Gouriou, C.; Eyraud, E.; Wernsdorfer, W.; Pigeau, B.; Arcizet, O. Ultrasensitive nano-optomechanical force sensor operated at dilution temperatures. Nat. Commun. 2021, 12, 4124. DOI: 10.1038/s41467-021-24318-y.
  • Paraïso, T.K.; Kalaee, M.; Zang, L.; Pfeifer, H.; Marquardt, F.; Painter, O. Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X 2015, 5, 041024. DOI: 10.1103/PhysRevX.5.041024.
  • Xia, J.; Qiao, Q.; Sun, H.; Huang, Y.; Chau, F.S.; Zhou, G. Ultrasensitive nanoscale optomechanical electrometer using photonic crystal cavities. Nanophotonics 2022, 11, 1629–1642. DOI: 10.1515/nanoph-2021-0820.
  • Liu, T.; Pagliano, F.; van Veldhoven, R.; Pogoretskiy, V.; Jiao, Y.; Fiore, A. Integrated nano-optomechanical displacement sensor with ultrawide optical bandwidth. Nat. Commun. 2020, 11, 4679. DOI: 10.1038/s41467-020-18579-2.
  • Basiri-Esfahani, S.; Armin, A.; Forstner, S.; Bowen, W.P. Precision ultrasound sensing on a chip. Nat. Commun. 2019, 10, 132. DOI: 10.1038/s41467-018-08038-4.
  • Shi, Q.; Wang, T.; Lee, C. MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci. Rep. 2016, 6, 24946. DOI: 10.1038/srep24946.
  • Wissmeyer, G.; Pleitez, M.A.; Rosenthal, A.; Ntziachristos, V. Looking at sound: Optoacoustics with all-optical ultrasound detection. Light Sci. Appl. 2018, 7, 53.
  • Tombez, L.; Zhang, E.J.; Orcutt, J.S.; Kamlapurkar, S.; Green, W.M.J. Methane absorption spectroscopy on a silicon photonic chip. Optica 2017, 4, 1322–1325. DOI: 10.1364/OPTICA.4.001322.
  • Fard, S.T.; Donzella, V.; Schmidt, S.A.; Flueckiger, J.; Grist, S.M.; Talebi Fard, P.; Wu, Y.; Bojko, R.J.; Kwok, E.; Jaeger, N.A.F.; Ratner, D.M.; Chrostowski, L. Performance of ultra-thin SOI-based resonators for sensing applications. Opt. Express 2014, 22, 14166–14179. DOI: 10.1364/OE.22.014166.
  • Gaur, G.; Hu, S.; Mernaugh, R.L.; Kravchenko, I.I.; Retterer, S.T.; Weiss, S.M. Label-free detection of Herceptin® using suspended silicon microring resonators. Sens. Actuat. B Chem. 2018, 275, 394–401. DOI: 10.1016/j.snb.2018.07.081.
  • Liu, Q.; Tu, X.; Kim, K.W.; Kee, J.S.; Shin, Y.; Han, K.; Yoon, Y.-J.; Lo, G.-Q.; Park, M.K. Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuat. B Chem. 2013, 188, 681–688. DOI: 10.1016/j.snb.2013.07.053.
  • Flueckiger, J.; Schmidt, S.; Donzella, V.; Sherwali, A.; Ratner, D.M.; Chrostowski, L.; Cheung, K.C. Sub-wavelength grating for enhanced ring resonator biosensor. Opt. Express 2016, 24, 15672–15686. DOI: 10.1364/OE.24.015672.
  • Lai, W.-C.; Chakravarty, S.; Zou, Y.; Chen, R.T. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy. Opt. Lett. 2013, 38, 3799–3802. DOI: 10.1364/OL.38.003799.
  • Luan, E.; Yun, H.; Laplatine, L.; Dattner, Y.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors. IEEE J. Select. Topics Quantum Electron. 2019, 25, 1–11. DOI: 10.1109/JSTQE.2018.2821842.
  • Lai, W.-C.; Chakravarty, S.; Wang, X.; Lin, C.; Chen, R.T. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water. Appl. Phys. Lett. 2011, 98, 023304.
  • Katiyi, A.; Karabchevsky, A. Si nanostrip optical waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared. ACS Sens. 2018, 3, 618–623. DOI: 10.1021/acssensors.7b00867.
  • Zou, Y.; Chakravarty, S.; Chung, C.-J.; Xu, X.; Chen, R.T. Mid-infrared silicon photonic waveguides and devices [invited]. Photon. Res. 2018, 6, 254–276. DOI: 10.1364/PRJ.6.000254.
  • Yazici, M.S.; Dong, B.; Hasan, D.; Sun, F.; Lee, C. Integration of MEMS IR detectors with MIR waveguides for sensing applications. Opt. Express 2020, 28, 11524–11537. DOI: 10.1364/OE.381279.
  • Lin, P.T.; Giammarco, J.; Borodinov, N.; Savchak, M.; Singh, V.; Kimerling, L.C.; Tan, D.T.H.; Richardson, K.A.; Luzinov, I.; Agarwal, A. Label-free water sensors using hybrid polymer–dielectric mid-infrared optical waveguides. ACS Appl Mater Interfaces 2015, 7, 11189–11194. DOI: 10.1021/acsami.5b01013.
  • Ottonello-Briano, F.; Errando-Herranz, C.; Rödjegård, H.; Martin, H.; Sohlström, H.; Gylfason, K.B. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide. Opt. Lett. 2020, 45, 109–112. DOI: 10.1364/OL.45.000109.
  • Singh, N.; Casas-Bedoya, A.; Hudson, D.D.; Read, A.; Mägi, E.; Eggleton, B.J. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide. Opt. Lett. 2016, 41, 5776–5779. DOI: 10.1364/OL.41.005776.
  • Chen, Y.; Lin, H.; Hu, J.; Li, M. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano 2014, 8, 6955–6961. DOI: 10.1021/nn501765k.
  • Mittal, V.; Nedeljkovic, M.; Carpenter, L.G.; Khokhar, A.Z.; Chong, H.M.H.; Mashanovich, G.Z.; Bartlett, P.N.; Wilkinson, J.S. Waveguide absorption spectroscopy of bovine serum albumin in the mid-infrared fingerprint region. ACS Sens. 2019, 4, 1749–1753. DOI: 10.1021/acssensors.9b00215.
  • Benéitez, N.T.; Baumgartner, B.; Missinne, J.; Radosavljevic, S.; Wacht, D.; Hugger, S.; Leszcz, P.; Lendl, B.; Roelkens, G. Mid-IR sensing platform for trace analysis in aqueous solutions based on a germanium-on-silicon waveguide chip with mesoporous silica coating for analyte enrichment. Opt. Express 2020, 28, 27013–27027. DOI: 10.1364/OE.399646.
  • Robinson, J.T.; Preston, K.; Painter, O.; Lipson, M. First-principle derivation of gain in high-index-contrast waveguides. Opt. Express 2008, 16, 16659–16669. DOI: 10.1364/oe.16.016659.
  • Lin, P.T.; Kwok, S.W.; Lin, H.G.; Singh, V.; Kimerling, L.C.; Whitesides, G.M.; Agarwal, A. Mid-infrared spectrometer using opto-nano fluidic slot-waveguide for label-free on-chip chemical sensing. Nano Lett. 2014, 14, 231–238. DOI: 10.1021/nl403817z.
  • Lin, P.T.; Singh, V.; Hu, J.; Richardson, K.; Musgraves, J.D.; Luzinov, I.; Hensley, J.; Kimerling, L.C.; Agarwal, A. Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides. Lab Chip 2013, 13, 2161–2166. DOI: 10.1039/c3lc50177a.
  • Liu, W.; Ma, Y.; Chang, Y.; Dong, B.; Wei, J.; Ren, Z.; Lee, C. Suspended silicon waveguide platform with subwavelength grating metamaterial cladding for long-wave infrared sensing applications. Nanophotonics 2021, 10, 1861–1870. DOI: 10.1515/nanoph-2021-0029.
  • Vlk, M.; Datta, A.; Alberti, S.; Yallew, H.D.; Mittal, V.; Murugan, G.S.; Jágerská, J. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light Sci. Appl 2021, 10, 26.
  • Zou, Y.; Chakravarty, S.; Wray, P.; Chen, R.T. Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection. Sens. Actuat. B Chem. 2015, 221, 1094–1103. DOI: 10.1016/j.snb.2015.07.061.
  • Yoo, K.M.; Midkiff, J.; Rostamian, A.; Chung, C.; Dalir, H.; Chen, R.T. InGaAs membrane waveguide: A promising platform for monolithic integrated mid-infrared optical gas sensor. ACS Sens. 2020, 5, 861–869. DOI: 10.1021/acssensors.0c00180.
  • Zhou, H.; Li, D.; Hui, X.; Mu, X. Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: Pushing the frontier of ultrasensitive on-chip sensing. Int. J. Optomechatronics 2021, 15, 97–119. DOI: 10.1080/15599612.2021.1953199.
  • Cubukcu, E.; Zhang, S.; Park, Y.; Bartal, G.; Zhang, X. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 2009, 95, 043113.
  • Neubrech, F.; Pucci, A.; Cornelius, T.W.; Karim, S.; García-Etxarri, A.; Aizpurua, J. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 2008, 101, 157403. DOI: 10.1103/PhysRevLett.101.157403.
  • Huck, C.; Vogt, J.; Sendner, M.; Hengstler, D.; Neubrech, F.; Pucci, A. Plasmonic enhancement of infrared vibrational signals: Nanoslits versus nanorods. ACS Photon. 2015, 2, 1489–1497. DOI: 10.1021/acsphotonics.5b00390.
  • Hasan, D.; Ho, C.P.; Lee, C. Thermally tunable absorption-induced transparency by a quasi 3D bow-tie nanostructure for nonplasmonic and volumetric refractive index sensing at mid-IR. Adv. Opt. Mater. 2016, 4, 943–952. DOI: 10.1002/adom.201600014.
  • Hasan, D.; Pitchappa, P.; Wang, J.; Wang, T.; Yang, B.; Ho, C.P.; Lee, C. Novel CMOS-compatible Mo–AlN–Mo platform for metamaterial-based mid-IR absorber. ACS Photon. 2017, 4, 302–315. DOI: 10.1021/acsphotonics.6b00672.
  • Hasan, D.; Lee, C. Hybrid metamaterial absorber platform for sensing of CO 2 gas at mid-IR. Adv. Sci. 2018, 5, 1700581.
  • Zhou, H.; Hui, X.; Li, D.; Hu, D.; Chen, X.; He, X.; Gao, L.; Huang, H.; Lee, C.; Mu, X. Metal–organic framework‐surface‐enhanced infrared absorption platform enables simultaneous on‐chip sensing of greenhouse gases. Adv. Sci. 2020, 7, 2001173. DOI: 10.1002/advs.202001173.
  • Li, D.; Zhou, H.; Hui, X.; He, X.; Huang, H.; Zhang, J.; Mu, X.; Lee, C.; Yang, Y. Multifunctional chemical sensing platform based on dual‐resonant infrared plasmonic perfect absorber for on‐chip detection of poly(ethyl cyanoacrylate). Adv. Sci. 2021, 8, 2101879. DOI: 10.1002/advs.202101879.
  • Yoo, D.; Mohr, D.A.; Vidal-Codina, F.; John-Herpin, A.; Jo, M.; Kim, S.; Matson, J.; Caldwell, J.D.; Jeon, H.; Nguyen, N.; Martin-Moreno, L.; Peraire, J.; Altug, H.; Oh, S. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps. Nano Lett. 2018, 18, 1930–1936. DOI: 10.1021/acs.nanolett.7b05295.
  • Cetin, A.E.; Etezadi, D.; Altug, H. Accessible nearfields by nanoantennas on nanopedestals for ultrasensitive vibrational spectroscopy. Adv. Opt. Mater. 2014, 2, 866–872. DOI: 10.1002/adom.201400171.
  • Wei, J.; Li, Y.; Chang, Y.; Hasan, D.M.N.; Dong, B.; Ma, Y.; Qiu, C.-W.; Lee, C. Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices. ACS Appl. Mater. Interfaces 2019, 11, 47270–47278. DOI: 10.1021/acsami.9b18002.
  • Zhou, H.; Li, D.; Ren, Z.; Mu, X.; Lee, C. Loss‐induced phase transition in mid‐infrared plasmonic metamaterials for ultrasensitive vibrational spectroscopy. InfoMat 2022, 4, e12349. DOI: 10.1002/inf2.12349.
  • Nugroho, F.A.A.; Darmadi, I.; Cusinato, L.; Susarrey-Arce, A.; Schreuders, H.; Bannenberg, L.J.; da Silva Fanta, A.B.; Kadkhodazadeh, S.; Wagner, J.B.; Antosiewicz, T.J.; Hellman, A.; Zhdanov, V.P.; Dam, B.; Langhammer, C. Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 2019, 18, 489–495. DOI: 10.1038/s41563-019-0325-4.
  • Zhou, H.; Ren, Z.; Xu, C.; Xu, L.; Lee, C. MOF/polymer-integrated multi-hotspot mid-infrared nanoantennas for sensitive detection of CO2 gas. Nanomicro Lett. 2022, 14, 207. DOI: 10.1007/s40820-022-00950-1.
  • Tittl, A.; John-Herpin, A.; Leitis, A.; Arvelo, E.; R and Altug, H. Metasurface-based molecular biosensing aided by artificial intelligence. Angew. Chem. Int. Ed. Engl. 2019, 58, 14810–14822. DOI: 10.1002/anie.201901443.
  • John-Herpin, A.; Kavungal, D.; von Mücke, L.; Altug, H. Infrared metasurface augmented by deep learning for monitoring dynamics between all major classes of biomolecules. Adv. Mater. 2021, 33, e2006054. DOI: 10.1002/adma.202006054.
  • Zhou, H.; Ren, Z.; Li, D.; Xu, C.; Mu, X.; Lee, C. Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons. Nat. Commun. 2023, 14, 7316. DOI: 10.1038/s41467-023-43127-z.
  • Ren, Z.; Zhang, Z.; Wei, J.; Dong, B.; Lee, C. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat. Commun. 2022, 13, 3859. DOI: 10.1038/s41467-022-31520-z.
  • Li, Z.; Zhang, H.; Nguyen, B.T.T.; Luo, S.; Liu, P.Y.; Zou, J.; Shi, Y.; Cai, H.; Yang, Z.; Jin, Y.; Hao, Y.; Zhang, Y.; Liu, A.-Q. Smart ring resonator–based sensor for multicomponent chemical analysis via machine learning. Photon. Res. 2021, 9, B38–B44. DOI: 10.1364/PRJ.411825.
  • Zhou, J.; Zhang, Z.; Dong, B.; Ren, Z.; Liu, W.; Lee, C. Midinfrared spectroscopic analysis of aqueous mixtures using artificial-intelligence-enhanced metamaterial waveguide sensing platform. ACS Nano. 2022, 17, 711–724. DOI: 10.1021/acsnano.2c10163.
  • Kapfinger, S.; Reichert, T.; Lichtmannecker, S.; Müller, K.; Finley, J.J.; Wixforth, A.; Kaniber, M.; Krenner, H.J. Dynamic acousto-optic control of a strongly coupled photonic molecule. Nat. Commun. 2015, 6, 8540. DOI: 10.1038/ncomms9540.
  • Liang, Q.; Wang, Q.; Zhang, Q.; Wei, J.; Lim, S.X.; Zhu, R.; Hu, J.; Wei, W.; Lee, C.; Sow, C.; Zhang, W.; Wee, A.T.S. High‐performance, room temperature, ultra‐broadband photodetectors based on air‐stable PdSe2. Adv. Mater. 2019, 31, 1807609.
  • Chen, P.-L.; Chen, Y.; Chang, T.-Y.; Li, W.-Q.; Li, J.-X.; Lee, S.; Fang, Z.; Li, M.; Majumdar, A.; Liu, C.-H. Waveguide-integrated Van Der Waals heterostructure mid-infrared photodetector with high performance. ACS Appl. Mater. Interfaces 2022, 14, 24856–24863. DOI: 10.1021/acsami.2c01094.
  • Weber, P.; Güttinger, J.; Noury, A.; Vergara-Cruz, J.; Bachtold, A. Force sensitivity of multilayer graphene optomechanical devices. Nat. Commun. 2016, 7, 12496. DOI: 10.1038/ncomms12496.
  • Zobenica, Ž.; van der Heijden, R.W.; Petruzzella, M.; Pagliano, F.; Leijssen, R.; Xia, T.; Midolo, L.; Cotrufo, M.; Cho, Y.; van Otten, F.W.M.; Verhagen, E.; Fiore, A. Integrated nano-opto-electro-mechanical sensor for spectrometry and nanometrology. Nat. Commun. 2017, 8, 2216. DOI: 10.1038/s41467-017-02392-5.
  • Yang, Z.; Albrow-Owen, T.; Cai, W.; Hasan, T. Miniaturization of optical spectrometers. Science 2021, 371, eabe0722. DOI: 10.1126/science.abe0722.
  • Muneeb, M.; Vasiliev, A.; Ruocco, A.; Malik, A.; Chen, H.; Nedeljkovic, M.; Penades, J.S.; Cerutti, L.; Rodriguez, J.B.; Mashanovich, G.Z.; Smit, M.K.; Tourni, E.; Roelkens, G. III-V-on-silicon integrated micro - spectrometer for the 3 μm wavelength range. Opt. Express 2016, 24, 9465–9472. DOI: 10.1364/OE.24.009465.
  • Pervez, N.K.; Cheng, W.; Jia, Z.; Cox, M.P.; Edrees, H.M.; Kymissis, I. Photonic crystal spectrometer. Opt. Express 2010, 18, 8277–8285. DOI: 10.1364/OE.18.008277.
  • Emadi, A.; Wu, H.; de Graaf, G.; Wolffenbuttel, R. Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter. Opt. Express 2012, 20, 489–507. DOI: 10.1364/OE.20.000489.
  • Ebermann, M.; Neumann, N.; Hiller, K.; Seifert, M.; Meinig, M.; Kurth, S. Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: A review. Proc. SPIE 2016, 9760, 97600H. DOI: 10.1117/12.2209288.
  • Velasco, A.V.; Cheben, P.; Bock, P.J.; Delâge, A.; Schmid, J.H.; Lapointe, J.; Janz, S.; Calvo, M.L.; Xu, D.-X.; Florjańczyk, M.; Vachon, M. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. Opt. Lett. 2013, 38, 706–708. DOI: 10.1364/OL.38.000706.
  • Zheng, S.N.; Zou, J.; Cai, H.; Song, J.F.; Chin, L.K.; Liu, P.Y.; Lin, Z.P.; Kwong, D.L.; Liu, A.Q. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat. Commun. 2019, 10, 2349. DOI: 10.1038/s41467-019-10282-1.
  • Bao, J.; Bawendi, M.G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70. DOI: 10.1038/nature14576.
  • Wang, Z.; Yi, S.; Chen, A.; Zhou, M.; Luk, T.S.; James, A.; Nogan, J.; Ross, W.; Joe, G.; Shahsafi, A.; Wang, K.X.; Kats, M.A.; Yu, Z. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 2019, 10, 1020. DOI: 10.1038/s41467-019-08994-5.
  • Li, A.; Fainman, Y. On-chip spectrometers using stratified waveguide filters. Nat. Commun. 2021, 12, 2704. DOI: 10.1038/s41467-021-23001-6.
  • Meng, J.; Cadusch, J.J.; Crozier, K.B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm. Nano Lett. 2020, 20, 320–328. DOI: 10.1021/acs.nanolett.9b03862.
  • Yang, Z.; Albrow-Owen, T.; Cui, H.; Alexander-Webber, J.; Gu, F.; Wang, X.; Wu, T.; Zhuge, M.; Williams, C.; Wang, P.; Zayats, A.V.; Cai, W.; Dai, L.; Hofmann, S.; Overend, M.; Tong, L.; Yang, Q.; Sun, Z.; Hasan, T. Single-nanowire spectrometers. Science 2019, 365, 1017–1020. DOI: 10.1126/science.aax8814.
  • Podmore, H.; Scott, A.; Cheben, P.; Velasco, A.V.; Schmid, J.H.; Vachon, M.; Lee, R. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer. Opt. Lett. 2017, 42, 1440–1443. DOI: 10.1364/OL.42.001440.
  • Kita, D.M.; Miranda, B.; Favela, D.; Bono, D.; Michon, J.; Lin, H.; Gu, T.; Hu, J. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun. 2018, 9, 4405. DOI: 10.1038/s41467-018-06773-2.
  • Chang, Y.; Xu, S.; Dong, B.; Wei, J.; Le, X.; Ma, Y.; Zhou, G.; Lee, C. Development of triboelectric-enabled tunable Fabry-Pérot photonic-crystal-slab filter towards wearable mid-infrared computational spectrometer. Nano Energy 2021, 89, 106446. DOI: 10.1016/j.nanoen.2021.106446.
  • Yuan, S.; Naveh, D.; Watanabe, K.; Taniguchi, T.; Xia, F. A wavelength-scale black phosphorus spectrometer. Nat. Photon. 2021, 15, 601–607. DOI: 10.1038/s41566-021-00787-x.
  • Yoon, H.H.; Fernandez, H.A.; Nigmatulin, F.; Cai, W.; Yang, Z.; Cui, H.; Ahmed, F.; Cui, X.; Uddin, M.G.; Minot, E.D.; Lipsanen, H.; Kim, K.; Hakonen, P.; Hasan, T.; Sun, Z. Miniaturized spectrometers with a tunable Van Der Waals junction. Science 2022, 378, 296–299. DOI: 10.1126/science.add8544.
  • Deng, W.; Zheng, Z.; Li, J.; Zhou, R.; Chen, X.; Zhang, D.; Lu, Y.; Wang, C.; You, C.; Li, S.; Sun, L.; Wu, Y.; Li, X.; An, B.; Liu, Z.; Wang, Q.; Duan, X.; Zhang, Y. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers. Nat. Commun. 2022, 13, 4627. DOI: 10.1038/s41467-022-32306-z.
  • Wang, H.; Chen, S.; Chen, X. Room-temperature self-powered infrared spectrometer based on a single black phosphorus heterojunction diode. Nano Lett. 2024, 24, 326–330. DOI: 10.1021/acs.nanolett.3c04044.
  • Wang, J.; Pan, B.; Wang, Z.; Zhang, J.; Zhou, Z.; Yao, L.; Wu, Y.; Ren, W.; Wang, J.; Ji, H.; Yu, J.; Chen, B. Single-pixel p-graded-n junction spectrometers. Nat. Commun. 2024, 15, 1773. DOI: 10.1038/s41467-024-46066-5.
  • Xu, H.; Qin, Y.; Hu, G.; Tsang, H.K. Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule. Light Sci. Appl. 2023, 12, 64.
  • Yao, C.; Xu, K.; Zhang, W.; Chen, M.; Cheng, Q.; Penty, R. Integrated reconstructive spectrometer with programmable photonic circuits. Nat. Commun. 2023, 14, 6376. DOI: 10.1038/s41467-023-42197-3.
  • Xu, H.; Qin, Y.; Hu, G.; Tsang, H.K. Cavity-enhanced scalable integrated temporal random-speckle spectrometry. Optica 2023, 10, 1177–1188. DOI: 10.1364/OPTICA.492572.
  • Qiao, Q.; Liu, X.; Ren, Z.; Dong, B.; Xia, J.; Sun, H.; Lee, C.; Zhou, G. MEMS-enabled on-chip computational mid-infrared spectrometer using silicon photonics. ACS Photon. 2022, 9, 2367–2377. DOI: 10.1021/acsphotonics.2c00381.
  • Zhang, E.J.; Martin, Y.; Orcutt, J.S.; Xiong, C.; Glodde, M.; Marchack, N.; Duch, E.A.; Barwicz, T.; Schares, L.; Green, W.M. Monolithically integrated silicon photonic chip sensor for near-infrared trace-gas spectroscopy. Proc. SPIE 2019, 11010, 110100B.
  • Su, P.; Han, Z.; Kita, D.; Becla, P.; Lin, H.; Deckoff-Jones, S.; Richardson, K.; Kimerling, L.C.; Hu, J.; Agarwal, A. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector. Appl. Phys. Lett. 2019, 114, 051103.
  • Altug, H.; Oh, S.H.; Maier, S.A.; Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 2022, 17, 5–16. DOI: 10.1038/s41565-021-01045-5.
  • Le, T.H.H.; Tanaka, T. Plasmonics-nanofluidics hydrid metamaterial: An ultrasensitive platform for infrared absorption spectroscopy and quantitative measurement of molecules. ACS Nano 2017, 11, 9780–9788. DOI: 10.1021/acsnano.7b02743.
  • Xu, J.; Du, Y.; Tian, Y.; Wang, C. Progress in wafer bonding technology towards MEMS, high-power electronics, optoelectronics, and optofluidics. Int. J. Optomechatronics 2020, 14, 94–118. DOI: 10.1080/15599612.2020.1857890.
  • Xu, J.; Ren, Z.; Dong, B.; Liu, X.; Wang, C.; Tian, Y.; Lee, C. Nanometer-scale heterogeneous interfacial sapphire wafer bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy. ACS Nano 2020, 14, 12159–12172. DOI: 10.1021/acsnano.0c05794.
  • Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutorials 2017, 19, 57–96. DOI: 10.1109/COMST.2016.2603518.
  • Bifano, T. Adaptive imaging mems deformable mirrors. Nat. Photon. 2011, 5, 21–23. DOI: 10.1038/nphoton.2010.297.
  • Li, L.; Stankovic, V.; Stankovic, L.; Li, L.; Cheng, S.; Uttamchandani, D. Single pixel optical imaging using a scanning MEMS mirror. J. Micromech. Microeng. 2011, 21, 025022. DOI: 10.1088/0960-1317/21/2/025022.
  • Wang, D.; Watkins, C.; Xie, H. MEMS mirrors for LiDAR: A review. Micromachines 2020, 11, 456. DOI: 10.3390/mi11050456.
  • Aljasem, K.; Froehly, L.; Seifert, A.; Zappe, H. Scanning and tunable micro-optics for endoscopic optical coherence tomography. J. Microelectromech. Syst. 2011, 20, 1462–1472. DOI: 10.1109/JMEMS.2011.2167656.
  • Chen, T.-H.; Fardel, R.; Arnold, C.B. Ultrafast z-scanning for high-efficiency laser micro-machining. Light Sci. Appl. 2018, 7, 17181. DOI: 10.1038/lsa.2017.181.
  • Jia, K.; Pal, S.; Xie, H. An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs. J. Microelectromech. Syst. 2009, 18, 1004–1015. DOI: 10.1109/JMEMS.2009.2023838.
  • Wang, D.; Zhang, J.; Liu, L.; Yan, Z.; Wang, P.; Ding, Y.; Xie, H.; Zhang, J.; Liu, L.; Yan, Z.; Wang, P.; Ding, Y.; Xie, H. Application of OCT for osteonecrosis using an endoscopic probe based on an electrothermal MEMS scanning mirror. Int. J. Optomechatronics 2021, 15, 87–96. DOI: 10.1080/15599612.2021.1923876.
  • Manh, C.H.; Hane, K. Vacuum operation of comb-drive micro display mirrors. J. Micromech. Microeng. 2009, 19, 105018. DOI: 10.1088/0960-1317/19/10/105018.
  • Chen, H.; Chen, A.; Sun, W.J.; Sun, Z.D.; Yeow, J.T.W. Closed-loop control of a 2-D MEMS micromirror with sidewall electrodes for a laser scanning microscope system. Int. J. Optomechatronics 2016, 10, 1–13. DOI: 10.1080/15599612.2015.1095956.
  • Koh, K.H.; Kobayashi, T.; Hsiao, F.L.; Lee, C. Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors. Sens. Actuat. A Phys. 2010, 162, 336–347. DOI: 10.1016/j.sna.2010.04.021.
  • Koh, K.H.; Kobayashi, T.; Xie, J.; Yu, A.; Lee, C. Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications. J. Micromech. Microeng. 2011, 21, 075001. DOI: 10.1088/0960-1317/21/7/075001.
  • Urey, H.; Holmstrom, S.; Yalcinkaya, A.D. Electromagnetically actuated FR4 scanners. IEEE Photon. Technol. Lett. 2008, 20, 30–32. DOI: 10.1109/LPT.2007.911522.
  • Yalcinkaya, A.D.; Urey, H.; Brown, D.; Montague, T.; Sprague, R. Two-axis electromagnetic microscanner for high resolution displays. J. Microelectromech. Syst. 2006, 15, 786–794. DOI: 10.1109/JMEMS.2006.879380.
  • Brown, G.; Li, L.; Bauer, R.; Liu, J.; Uttamchandani, D. A two-axis hybrid MEMS scanner incorporating electrothermal and electrostatic actuators. In 2010 International Conference on Optical MEMS and Nanophotonics; Sapporo, Japan; 09–12 August 2010; IEEE: Piscataway, NJ, 2010; pp 115–116. DOI: 10.1109/OMEMS.2010.5672156.
  • Li, L.; Bauer, R.; Brown, G.; Uttamchandani, D. A symmetric hybrid MEMS scanner with electrothermal and electrostatic actuators. In 16th International Conference on Optical MEMS and Nanophotonics; Istanbul, Turkey; 08-11 August 2011; IEEE: Piscataway, NJ; 2011; pp 163–164. DOI: 10.1109/OMEMS.2011.6031038.
  • Lerch, P.; Kara Slimane, C.; Romanowicz, B.; Renaud, P. Modelization and characterization of asymmetrical thermal micro-actuators. J. Micromech. Microeng. 1996, 6, 134–137. DOI: 10.1088/0960-1317/6/1/033.
  • Lai, Y.J.; Lee, C.; Wu, C.Y.; Chen, W.C.; Chen, C.; Lin, Y.S.; Fang, W.; Huang, R.S. Development of electrothermal actuator with optimized motion characteristics. Jpn. J. Appl. Phys. 2003, 42, 4067–4073. DOI: 10.1143/JJAP.42.4067.
  • DeVoe, D.L. Thermal issues in MEMS and microscale systems. IEEE Trans. Comp. Packag. Technol. 2002, 25, 576–583. DOI: 10.1109/TCAPT.2003.809110.
  • Yeh J.A., Jiang, S.S.; Lee, C. MOEMS variable optical attenuators using rotary comb drive actuators. IEEE Photon. Technol. Lett. 2006, 18, 1170–1172. DOI: 10.1109/LPT.2006.873959.
  • Koh, K.H.; Lee, C.; Kobayashi, T. A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects. J. Microelectromech. Syst. 2010, 19, 1370–1379. DOI: 10.1109/JMEMS.2010.2076785.
  • Koh, K.H.; Kobayashi, T.; Lee, C. A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator. Opt. Express 2011, 19, 13812–13824. DOI: 10.1364/OE.19.013812.
  • Koh, K.H.; Kobayashi, T.; Lee, C. Investigation of piezoelectric driven MEMS mirrors based on single and double S-shaped PZT actuator for 2-D scanning applications. Sensors Actuat. A Phys. 2012, 184, 149–159. DOI: 10.1016/j.sna.2012.06.018.
  • Koh, K.H.; Qian, Y.; Lee, C. Design and characterization of a 3D MEMS VOA driven by hybrid electromagnetic and electrothermal actuation mechanisms. J. Micromech. Microeng. 2012, 22, 105031. DOI: 10.1088/0960-1317/22/10/105031.
  • Koh, K.H.; Soon, B.W.; Tsai, J.M.; Danner, A.J.; Lee, C. Study of hybrid driven micromirrors for 3-D variable optical attenuator applications. Opt. Express 2012, 20, 21598–21611. DOI: 10.1364/OE.20.021598.
  • Lin, Y.-S.; Ma, F.; Lee, C. Three-dimensional movable metamaterial using electric split-ring resonators. Opt. Lett. 2013, 38, 3126–3128. DOI: 10.1364/OL.38.003126.
  • Ma, F.; Lin, Y.-S.; Zhang, X.; Lee, C. Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci. Appl. 2014, 3, e171–e171. DOI: 10.1038/lsa.2014.52.
  • Pitchappa, P.; Manjappa, M.; Ho, C.P.; Singh, R.; Singh, N.; Lee, C. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv. Opt. Mater. 2016, 4, 541–547. DOI: 10.1002/adom.201500676.
  • Pitchappa, P.; Ho, C.P.; Cong, L.; Singh, R.; Singh, N.; Lee, C. Reconfigurable digital metamaterial for dynamic switching of terahertz anisotropy. Adv. Opt. Mater. 2016, 4, 391–398. DOI: 10.1002/adom.201500588.
  • Shirmanesh, G.K.; Sokhoyan, R.; Wu, P.C.; Wu, P.C.; Atwater, H.A.; Atwater, H.A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 2020, 14, 6912–6920. DOI: 10.1021/acsnano.0c01269.
  • Zhao, X.; Schalch, J.; Zhang, J.; Seren, H.R.; Duan, G.; Averitt, R.D.; Zhang, X. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 2018, 5, 303–310. DOI: 10.1364/OPTICA.5.000303.
  • Manjappa, M.; Pitchappa, P.; Wang, N.; Lee, C.; Singh, R. Active control of resonant cloaking in a terahertz MEMS metamaterial. Adv. Opt. Mater. 2018, 6, 1800141. DOI: 10.1002/adom.201800141.
  • Lin, Y.S.; Xu, Z. Reconfigurable metamaterials for optoelectronic applications. Int. J. Optomechatronics 2020, 14, 78–93. DOI: 10.1080/15599612.2020.1834655.
  • Pitchappa, P.; Ho, C.P.; Dhakar, L.; Lee, C. Microelectromechanically reconfigurable interpixelated metamaterial for independent tuning of multiple resonances at terahertz spectral region. Optica 2015, 2, 571–578. DOI: 10.1364/OPTICA.2.000571.
  • Arbabi, E.; Arbabi, A.; Kamali, S.M.; Horie, Y.; Faraji-Dana, M.; Faraon, A. MEMS-tunable dielectric metasurface lens. Nat. Commun. 2018, 9, 812. DOI: 10.1038/s41467-018-03155-6.
  • Kwon, H.; Faraon, A. NEMS-tunable dielectric chiral metasurfaces. ACS Photon. 2021, 8, 2980–2986. DOI: 10.1021/acsphotonics.1c00898.
  • Seok, T.J.; Quack, N.; Han, S.; Muller, R.S.; Wu, M.C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers: Supplementary material. Optica 2016, 3, 64–70. DOI: 10.1364/OPTICA.3.000064.
  • Akihama, Y.; Hane, K. Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers. Light Sci. Appl. 2012, 1, e16–e16. DOI: 10.1038/lsa.2012.16.
  • Takabayashi, A.Y.; Sattari, H.; Edinger, P.; Verheyen, P.; Gylfason, K.B.; Bogaerts, W.; Quack, N. Broadband compact single-pole double-throw silicon photonic MEMS switch. J. Microelectromech. Syst. 2021, 30, 322–329. DOI: 10.1109/JMEMS.2021.3060182.
  • Han, S.; Beguelin, J.; Ochikubo, L.; Jacobs, J.; Seok, T.J.; Yu, K.; Quack, N.; Kim, C.-K.; Muller, R.S.; Wu, M.C. 32 × 32 Silicon photonic MEMS switch with gap-adjustable directional couplers fabricated in commercial CMOS foundry. J. Opt. Microsyst. 2021, 1, 024003.
  • Qiao, Q.; Yazici, M.S.; Dong, B.; Liu, X.; Lee, C.; Zhou, G. Multifunctional mid-infrared photonic switch using a MEMS-based tunable waveguide coupler. Opt. Lett. 2020, 45, 5620–5623. DOI: 10.1364/OL.400132.
  • Quack, N.; Sattari, H.; Takabayashi, A.Y.; Zhang, Y.; Verheyen, P.; Bogaerts, W.; Edinger, P.; Errando-Herranz, C.; Gylfason, K.B. MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron. 2020, 56, 1–10. DOI: 10.1109/JQE.2019.2946841.
  • Quack, N.; Takabayashi, A.Y.; Sattari, H.; Edinger, P.; Jo, G.; Bleiker, S.J.; Errando-Herranz, C.; Gylfason, K.B.; Niklaus, F.; Khan, U.; Verheyen, P.; Mallik, A.K.; Lee, J.S.; Jezzini, M.; Morrissey, P.; Antony, C.; O’Brien, P.; Bogaerts, W. Integrated silicon photonic MEMS. Microsyst. Nanoeng. 2023, 9, 27.
  • Bogaerts, W.; Sattari, H.; Edinger, P.; Takabayashi, A.Y.; Zand, I.; Wang, X.; Ribeiro, A.; Jezzini de Anda, M.A.; Errando-Herranz, C.; Talli, G.; Saurav, K.; Garcia Porcel, M.A.; Verheyen, P.; Abasahl, B.; Niklaus, F.; Quack, N.; Gylfason, K.B.; O’Brien, P.; Khan, M.U.. MORPHIC: Programmable photonic circuits enabled by silicon photonic MEMS. In Silicon Photonics XV; Reed, G.T.; Knights, A.P., Eds.; SPIE: Bellingham, WA; 2020; vol 11285; pp. 1128503. DOI: 10.1117/12.2540934.
  • Bogaerts, W.; Pérez, D.; Capmany, J.; Miller, D.A.B.; Poon, J.; Englund, D.; Morichetti, F.; Melloni, A. Programmable photonic circuits. Nature 2020, 586, 207–216. DOI: 10.1038/s41586-020-2764-0.
  • Errando-Herranz, C.; Takabayashi, A.Y.; Edinger, P.; Sattari, H.; Gylfason, K.B.; Quack, N. MEMS for photonic integrated circuits. IEEE J. Select. Topics Quantum Electron. 2020, 26, 1–16. DOI: 10.1109/JSTQE.2019.2943384.
  • Dong, M.; Clark, G.; Leenheer, A.J.; Zimmermann, M.; Dominguez, D.; Menssen, A.J.; Heim, D.; Gilbert, G.; Englund, D.; Eichenfield, M. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 2021, 16, 59–65. DOI: 10.1038/s41566-021-00903-x.
  • Stegmaier, M.; Ríos, C.; Bhaskaran, H.; Wright, C.D.; Pernice, W.H.P. Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks. Adv. Opt. Mater. 2017, 5, 1600346.
  • Zhang, H.; Zhou, L.; Lu, L.; Xu, J.; Wang, N.; Hu, H.; Rahman, B.M.A.; Zhou, Z.; Chen, J. Miniature multilevel optical memristive switch using phase change material. ACS Photon. 2019, 6, 2205–2212. DOI: 10.1021/acsphotonics.9b00819.
  • Abdollahramezani, S.; Hemmatyar, O.; Taghinejad, H.; Krasnok, A.; Kiarashinejad, Y.; Zandehshahvar, M.; Alù, A.; Adibi, A. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 2020, 9, 1189–1241. DOI: 10.1515/nanoph-2020-0039.
  • Fang, Z.; Chen, R.; Zheng, J.; Majumdar, A. Non-volatile reconfigurable silicon photonics based on phase-change materials. IEEE J. Select. Topics Quantum Electron. 2022, 28, 1–17. DOI: 10.1109/JSTQE.2021.3120713.
  • Wu, C.; Yu, H.; Li, H.; Zhang, X.; Takeuchi, I.; Li, M. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photon. 2019, 6, 87–92. DOI: 10.1021/acsphotonics.8b01516.
  • Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 2015, 9, 725–732. DOI: 10.1038/nphoton.2015.182.
  • Cheng, Z.; Ríos, C.; Pernice, W.H.P.; Wright, C.D.; Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 2017, 3, e1700160. DOI: 10.1126/sciadv.1700160.
  • Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Le Gallo, M.; Fu, X.; Lukashchuk, A.; Raja, A.S.; Liu, J.; Wright, C.D.; Sebastian, A.; Kippenberg, T.J.; Pernice, W.H.P.; Bhaskaran, H. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021, 589, 52–58. DOI: 10.1038/s41586-020-03070-1.
  • Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. DOI: 10.1038/s41586-019-1157-8.
  • Dregely, D.; Lindfors, K.; Lippitz, M.; Engheta, N.; Totzeck, M.; Giessen, H. Imaging and steering an optical wireless nanoantenna link. Nat. Commun. 2014, 5, 4354. DOI: 10.1038/ncomms5354.
  • Wolf, O.; Campione, S.; Benz, A.; Ravikumar, A.P.; Liu, S.; Luk, T.S.; Kadlec, E.A.; Shaner, E.A.; Klem, J.F.; Sinclair, M.B.; Brener, I. Phased-array sources based on nonlinear metamaterial nanocavities. Nat. Commun. 2015, 6, 7667. DOI: 10.1038/ncomms8667.
  • Wei, X.Y.; Wang, X.; Kuang, S.Y.; Su, L.; Li, H.Y.; Wang, Y.; Pan, C.; Wang, Z.L.; Zhu, G. Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing. Adv. Mater. 2016, 28, 6656–6664. DOI: 10.1002/adma.201600604.
  • Fang, H.; Tian, H.; Li, J.; Li, Q.; Dai, J.; Ren, T.L.; Dong, G.; Yan, Q. Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence. Nano Energy 2016, 20, 48–56. DOI: 10.1016/j.nanoen.2015.12.001.
  • He, T.; Wang, H.; Wang, J.; Tian, X.; Wen, F.; Shi, Q.; Ho, J.S.; Lee, C. Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications. Adv. Sci. 2019, 6, 1901437.
  • Zhu, M.; Shi, Q.; He, T.; Yi, Z.; Ma, Y.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952. DOI: 10.1021/acsnano.8b08329.
  • He, T.; Shi, Q.; Wang, H.; Wen, F.; Chen, T.; Ouyang, J.; Lee, C. Beyond energy harvesting – multi-functional triboelectric nanosensors on a textile. Nano Energy 2019, 57, 338–352. DOI: 10.1016/j.nanoen.2018.12.032.
  • Kwak, S.S.; Yoon, H.J.; Kim, S.W. Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 2019, 29, 1804533.
  • Dong, B.; Shi, Q.; He, T.; Zhu, S.; Zhang, Z.; Sun, Z.; Ma, Y.; Kwong, D.; Lee, C. Wearable triboelectric/aluminum nitride nano-energy-nano-system with self-sustainable photonic modulation and continuous force sensing. Adv. Sci. 2020, 7, 1903636.
  • Dong, B.; Yang, Y.; Shi, Q.; Xu, S.; Sun, Z.; Zhu, S.; Zhang, Z.; Kwong, D.L.; Zhou, G.; Ang, K.W.; Lee, C. Wearable triboelectric-human-machine interface (THMI) using robust nanophotonic readout. ACS Nano 2020, 14, 8915–8930. DOI: 10.1021/acsnano.0c03728.
  • Sun, Z.; Zhu, M.; Lee, C. Progress in the triboelectric human–machine interfaces (HMIs)-Moving from smart gloves to AI/haptic enabled HMI in the 5G/IoT era. Nanoenergy Adv. 2021, 1, 81–121. DOI: 10.3390/nanoenergyadv1010005.
  • Wen, F.; Zhang, Z.; He, T.; Lee, C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 2021, 12, 5378. DOI: 10.1038/s41467-021-25637-w.
  • Zhang, Z.; He, T.; Zhu, M.; Sun, Z.; Shi, Q.; Zhu, J.; Dong, B.; Yuce, M.R.; Lee, C. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. NPJ Flex. Electron. 2020, 4, 29.
  • Shi, Q.; Zhang, Z.; He, T.; Sun, Z.; Wang, B.; Feng, Y.; Shan, X.; Salam, B.; Lee, C. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 2020, 11, 4609. DOI: 10.1038/s41467-020-18471-z.
  • Zhou, H.; Dong, J.; Cheng, J.; Dong, W.; Huang, C.; Shen, Y.; Zhang, Q.; Gu, M.; Qian, C.; Chen, H.; Ruan, Z.; Zhang, X. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 2022, 11, 30.
  • Shastri, B.J.; Tait, A.N.; Ferreira de Lima, T.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 2021, 15, 102–114. DOI: 10.1038/s41566-020-00754-y.
  • Dong, B.; Aggarwal, S.; Zhou, W.; Ali, U.E.; Farmakidis, N.; Lee, J.S.; He, Y.; Li, X.; Kwong, D.; Wright, C.D.; Pernice, W.H.P.; Bhaskaran, H. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photon. 2023, 17, 1080–1088. DOI: 10.1038/s41566-023-01313-x.
  • Van Acoleyen, K.; Bogaerts, W.; Jágerská, J.; Le Thomas, N.; Houdré, R.; Baets, R. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett. 2009, 34, 1477–1479. DOI: 10.1364/ol.34.001477.
  • Van Acoleyen, K.; Rogier, H.; Baets, R. Two-dimensional optical phased array antenna on silicon-on-insulator. Opt. Express 2010, 18, 13655–13660. DOI: 10.1364/OE.18.013655.
  • Doylend, J.K.; Heck, M.J.R.; Bovington, J.T.; Peters, J.D.; Coldren, L.A.; Bowers, J.E. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt. Express 2011, 19, 21595–21604. DOI: 10.1364/OE.19.021595.
  • Kwong, D.; Hosseini, A.; Zhang, Y.; Chen, R.T. 1 × 12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane. Appl. Phys. Lett. 2011, 99, 051104.
  • Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199. DOI: 10.1038/nature11727.
  • Aflatouni, F.; Abiri, B.; Rekhi, A.; Hajimiri, A. Nanophotonic coherent imager. Opt. Express 2015, 23, 5117–5125. DOI: 10.1364/OE.23.005117.
  • Inoue, D.; Ichikawa, T.; Kawasaki, A.; Yamashita, T. Demonstration of a new optical scanner using silicon photonics integrated circuit. Opt. Express 2019, 27, 2499–2508. DOI: 10.1364/OE.27.002499.
  • Li, C.; Cao, X.; Wu, K.; Li, X.; Chen, J. Lens-based integrated 2D beam-steering device with defocusing approach and broadband pulse operation for lidar application. Opt. Express 2019, 27, 32970–32983. DOI: 10.1364/OE.27.032970.
  • Wang, Y.; Zhou, G.; Zhang, X.; Kwon, K.; Blanche, P.-A.; Triesault, N.; Yu, K.; Wu, M.C. 2D broadband beamsteering with large-scale MEMS optical phased array. Optica 2019, 6, 557–562. DOI: 10.1364/OPTICA.6.000557.
  • Miller, S.A.; Chang, Y.-C.; Phare, C.T.; Shin, M.C.; Zadka, M.; Roberts, S.P.; Stern, B.; Ji, X.; Mohanty, A.; Jimenez Gordillo, O.A.; Dave, U.D.; Lipson, M. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica 2020, 7, 3–6. DOI: 10.1364/OPTICA.7.000003.
  • Kim, T.; Bhargava, P.; Poulton, C.V.; Notaros, J.; Yaacobi, A.; Timurdogan, E.; Baiocco, C.; Fahrenkopf, N.; Kruger, S.; Ngai, T.; Timalsina, Y.; Watts, M.R.; Stojanovic, V. A single-chip optical phased array in a wafer-scale silicon photonics/CMOS 3D-integration platform. IEEE J. Solid-State Circuits 2019, 54, 3061–3074. DOI: 10.1109/JSSC.2019.2934601.
  • Fatemi, R.; Khachaturian, A.; Hajimiri, A. A nonuniform sparse 2-D large-FOV optical phased array with a low-power PWM drive. IEEE J. Solid-State Circuits 2019, 54, 1200–1215. DOI: 10.1109/JSSC.2019.2896767.
  • Cao, X.; Qiu, G.; Wu, K.; Li, C.; Chen, J. Lidar system based on lens assisted integrated beam steering. Opt. Lett. 2020, 45, 5816–5819. DOI: 10.1364/OL.401486.
  • Ito, H.; Kusunoki, Y.; Maeda, J.; Akiyama, D.; Kodama, N.; Abe, H.; Tetsuya, R.; Baba, T. Wide beam steering by slow-light waveguide gratings and a prism lens. Optica 2020, 7, 47–52. DOI: 10.1364/OPTICA.381484.
  • Abe, H.; Takeuchi, M.; Takeuchi, G.; Ito, H.; Yokokawa, T.; Kondo, K.; Furukado, Y.; Baba, T. Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide. Opt. Express 2018, 26, 9389–9397. DOI: 10.1364/OE.26.009389.
  • Zhang, X.; Kwon, K.; Henriksson, J.; Luo, J.; Wu, M.C. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature 2022, 603, 253–258. DOI: 10.1038/s41586-022-04415-8.
  • Bogaerts, W.; Rahim, A. Programmable photonics: An opportunity for an accessible large-volume PIC ecosystem. IEEE J. Select. Topics Quantum Electron. 2020, 26, 1–17. DOI: 10.1109/JSTQE.2020.2982980.
  • Kim, D.U.; Park, Y.J.; Kim, D.Y.; Jeong, Y.; Lim, M.G.; Hong, M.S.; Her, M.J.; Rah, Y.; Choi, D.J.; Han, S.; Yu, K. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption. Nat. Photon. 2023, 17, 1089–1096. DOI: 10.1038/s41566-023-01327-5.
  • Zhang, L.; Dong, J.; Ding, F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 2021, 121, 6321–6372. DOI: 10.1021/acs.chemrev.0c01191.
  • Xu, X.; Guo, T.; Kim, H.; Hota, M.K.; Alsaadi, R.S.; Lanza, M.; Zhang, X.; Alshareef, H.N. Growth of 2D materials at the wafer scale. Adv. Mater. 2022, 34, e2108258. DOI: 10.1002/adma.202108258.
  • Mišeikis, V.; Coletti, C. Wafer-scale integration of graphene for waveguide-integrated optoelectronics. Appl. Phys. Lett. 2021, 119, 050501.
  • Chang, T.Y.; Chen, Y.; Luo, D.I.; Li, J.X.; Chen, P.L.; Lee, S.; Fang, Z.; Li, W.Q.; Zhang, Y.Y.; Li, M.; Majumdar, A.; Liu, C.H. Black phosphorus mid-infrared light-emitting diodes integrated with silicon photonic waveguides. Nano Lett. 2020, 20, 6824–6830. DOI: 10.1021/acs.nanolett.0c02818.
  • Huang, L.; Dong, B.; Yu, Z.G.; Zhou, J.; Ma, Y.; Zhang, Y.-W.; Lee, C.; Ang, K.-W. Mid-infrared modulators integrating silicon and black phosphorus photonics. Mater. Today Adv. 2021, 12, 100170. DOI: 10.1016/j.mtadv.2021.100170.
  • Geiger, S.; Michon, J.; Liu, S.; Qin, J.; Ni, J.; Hu, J.; Gu, T.; Lu, N. Flexible and stretchable photonics: The next stretch of opportunities. ACS Photon. 2020, 7, 2618–2635. DOI: 10.1021/acsphotonics.0c00983.
  • Seo, J.H.; Swinnich, E.; Zhang, Y.Y.; Kim, M. Low dimensional freestanding semiconductors for flexible optoelectronics: Materials, synthesis, process, and applications. Mater. Res. Lett. 2020, 8, 123–144. DOI: 10.1080/21663831.2020.1718231.
  • Yao, K.; Unni, R.; Zheng, Y. Intelligent nanophotonics: Merging photonics and artificial intelligence at the nanoscale. Nanophotonics 2019, 8, 339–366. DOI: 10.1515/nanoph-2018-0183.
  • Midolo, L.; Schliesser, A.; Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 2018, 13, 11–18. DOI: 10.1038/s41565-017-0039-1.
  • Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated photonic quantum technologies. Nat. Photon. 2020, 14, 273–284. DOI: 10.1038/s41566-019-0532-1.
  • Kim, M.; Jacob, Z.; Rho, J. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl. 2020, 9, 130.
  • Zhu, Y.; Tang, T.; Zhao, S.; Joralmon, D.; Poit, Z.; Ahire, B.; Keshav, S.; Raje, A.R.; Blair, J.; Zhang, Z.; Li, X. Recent advancements and applications in 3D printing of functional optics. Addit. Manuf. 2022, 52, 102682. DOI: 10.1016/j.addma.2022.102682.