282
Views
0
CrossRef citations to date
0
Altmetric
Note

Design and Application of Liquid Silicone Rubber Light Guide in Compact Automotive Headlamps

, , &

References

  • Shin, D.-Y.; Shin, W.-G.; Hwang, H.-M.; Kang, G.-H. Grid-type LED media façade with reflective walls for building-integrated photovoltaics with virtually no shading loss. Appl. Energy 2023, 332, 120553. DOI: 10.1016/j.apenergy.2022.120553.
  • Reames, T.G.; Reiner, M.A.; Stacey, M.B. An incandescent truth: Disparities in energy-efficient lighting availability and prices in an urban US county. Appl. Energy. 2018, 218, 95–103. DOI: 10.1016/j.apenergy.2018.02.143.
  • Morfeldt, J.; Johansson, D.J. Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles. Nat. Commun. 2022, 13, 6400. DOI: 10.1038/s41467-022-33666-2.
  • Khezri, M.; Heshmati, A.; Khodaei, M. Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 Emissions. Appl. Energy 2022, 306, 117948. DOI: 10.1016/j.apenergy.2021.117948.
  • Qu, J.; Zhang, D.; Zhang, J.; Tao, W. LED chip cooling system using ionic wind induced by multi-wire corona discharge. Appl. Therm. Eng. 2021, 193, 116946. DOI: 10.1016/j.applthermaleng.2021.116946.
  • Lin, H.; Hu, T.; Cheng, Y.; Chen, M.; Wang, Y. Glass ceramic phosphors: towards long‐lifetime high‐power white light‐emitting‐diode applications–a review. Laser Photonics Rev. 2018, 12, 1700344. DOI: 10.1002/lpor.201700344.
  • Feng, S.; Liu, Z.; Cheng, B.; Sun, S.; Lu, T.J.; Xu, F. Design of a novel LED bulb with entire surface thermally activated for passive cooling. Appl. Therm. Eng. 2021, 198, 117466. DOI: 10.1016/j.applthermaleng.2021.117466.
  • Ahn, B.-L.; Jang, C.-Y.; Leigh, S.-B.; Yoo, S.; Jeong, H. Effect of LED lighting on the cooling and heating loads in office buildings. Appl. Energy 2014, 113, 1484–1489. DOI: 10.1016/j.apenergy.2013.08.050.
  • Kumar, P.; Sahu, G.; Chatterjee, D.; Khandekar, S. Copper wick based loop heat pipe for thermal management of a high-power LED module. Appl. Therm. Eng. 2022, 211, 118459. DOI: 10.1016/j.applthermaleng.2022.118459.
  • Ye, Z. T.; Hu, C. C.; Chiua, C. C. Wide angle mini-LEDs combined with multifocal micro reflector cavity for thin portable device flashlight. Int. J. Optomechatronics 2024, 18, 2323464. DOI: 10.1080/15599612.2024.2323464.
  • Seo, J.-H.; Lee, M.-Y. Illuminance and heat transfer characteristics of high power LED cooling system with heat sink filled with ferrofluid. Appl. Therm. Eng. 2018, 143, 438–449. DOI: 10.1016/j.applthermaleng.2018.07.079.
  • Singh, R.; Mochizuki, M.; Yamada, T.; Nguyen, T. Cooling of LED headlamp in automotive by heat pipes. Appl. Therm. Eng. 2020, 166, 114733. DOI: 10.1016/j.applthermaleng.2019.114733.
  • Ma, S.-H.; Lee, C.-H.; Yang, C.-H. Achromatic LED-based projection lens design for automobile headlamp. Optik 2019, 191, 89–99. DOI: 10.1016/j.ijleo.2019.05.086.
  • Lin, H.-J.; Sun, C.-C.; Wu, C.-S.; Lee, X.-H.; Yang, T.-H.; Lin, S.-K.; Lin, Y.-J.; Yu, Y.-W. Design of a bicycle head lamp using an atypical white light-emitting diode with separate dies. Crystals 2019, 9, 659. DOI: 10.3390/cryst9120659.
  • Sun, C.-C.; Wu, C.-S.; Lin, Y.-S.; Lin, Y.-J.; Hsieh, C.-Y.; Lin, S.-K.; Yang, T.-H.; Yu, Y.-W. Review of optical design for vehicle forward lighting based on white LEDs. Opt. Eng. 2021, 60, 091501–091501. DOI: 10.1117/1.OE.60.9.091501.
  • Nguyen, Q.-K.; Lin, Y.-J.; Sun, C.; Lee, X.-H.; Lin, S.-K.; Wu, C.-S.; Yang, T.-H.; Wu, T.-L.; Lee, T.-X.; Chien, C.-H.; et al. GaN-based mini-LED matrix applied to multi-functional forward lighting. Sci. Rep. 2022, 12, 6444. DOI: 10.1038/s41598-022-10392-9.
  • Ye, Z. T.; Hu, C. C.; Zheng, Y. J. Wide heart-shaped mini-LEDs without a second lens as a large area, ultra-high luminance, and flat light source. Opt. Express 2024, 32, 5874–5884. DOI: 10.1364/OE.518534.
  • Shi, Q.; Dong, B.; He, T.; Sun, Z.; Zhu, J.; Zhang, Z.; Lee, C. Progress in wearable electronics/photonics – Moving towards the era of artificial intelligence (AI) and internet of things (IoT). InfoMat 2020, 2, 1131–1162. DOI: 10.1002/inf2.12122.
  • Ye, Z. T.; Chen, Y. L.; Chiu, C. C.; Hu, C. C. Zero-optical-distance mini-LED backlight with light-guiding microstructure lens for extra-thin, large-area notebook LCDs. Opt. Express. 2023, 31, 43600–43614. Issue DOI: 10.1364/OE.506286.
  • Sun, C.-C.; Wu, C.-S.; Hsieh, C.-Y.; Lee, Y.-H.; Lin, S.-K.; Lee, T.-X.; Yang, T.-H.; Yu, Y.-W. Single reflector design for integrated low/high beam meeting multiple regulations with light field management. Opt. Express 2021, 29, 18865–18875. DOI: 10.1364/OE.425866.
  • Lee, J. H.; Han, S. G.; Jin, M. J. Minimum achievable height of a single-module LED low-beam projection headlamp. Appl. Opt. 2021, 60, E8–E16. DOI: 10.1364/AO.417144.
  • Yang, Y.; Qiu, D.; Zeng, Y.; Li, R.; Duan, W.; Fan, R. Design of a reflective LED automotive headlamp lighting system based on a free-form surface. Appl. Opt. 2021, 60, 8910–8914. DOI: 10.1364/AO.431320.
  • Hu, C. C.; Zheng, Y. J.; Liu, C. N.; Ye, Z. T. Full-angle chip scale package of mini LEDs with V-shape packaging structure. Opt Express 2024, 32, 9287–9296. DOI: 10.1364/OE.515800.
  • Sun, W.-S.; Tien, C.-L.; Lo, W.-C.; Chu, P.-Y. Optical design of an LED motorcycle headlamp with compound reflectors and a toric lens. Appl. Opt. 2015, 54, E102–E108. DOI: 10.1364/AO.54.00E102.
  • Yeh, C.-H.; Han, P.; Wang, I.-J.; Lin, E.-T. Using design of experiment for parameter optimization on smart headlamp optics design. Appl. Opt. 2019, 58, 7661–7683. DOI: 10.1364/AO.58.007661.
  • Chen, H.-C.; Zhou, J.-H.; Zhou, Y. Stacking illumination of a confocal reflector light emitting diode automobile headlamp with an asymmetric triangular prism. Appl. Opt. 2017, 56, 1087–1093. DOI: 10.1364/AO.56.001087.
  • Wang, H.; Wang, X.; Li, Y.; Ge, P. Design of a newly projected light-emitting diode low-beam headlamp based on microlenses. Appl. Opt. 2015, 54, 1794–1801. DOI: 10.1364/AO.54.001794.
  • Sun, W.-S.; Tien, C.-L.; Chen, J.-A.; Lin, J.-S. Optical design for a cost-effective low-beam headlamp with a white light LED. Opt. Quant. Electron. 2020, 52, 1–17. DOI: 10.1007/s11082-020-02604-1.
  • Zhang, H.; Liu, D.; Wei, Y.; Wang, H. Asymmetric double freeform surface lens for integrated LED automobile headlamp. Micromachines 2021, 12, 663. DOI: 10.3390/mi12060663.
  • Liang, W.-L.; Su, G.-D. J. Design of a high-efficiency train headlamp with low power consumption using dual half-parabolic aluminized reflectors. Appl. Opt. 2018, 57, 1305–1314. DOI: 10.1364/AO.57.001305.
  • Wang, H.; Li, X.; Ge, P. Design of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. Opt. Laser Technol. 2017, 88, 11–16. DOI: 10.1016/j.optlastec.2016.08.015.
  • Chu, S.-C.; Chen, P.-Y.; Huang, C.-Y.; Chang, K.-C. Design of a high-efficiency LED low-beam headlamp using Oliker’s compound ellipsoidal reflector. Appl. Opt. 2020, 59, 4872–4879. DOI: 10.1364/AO.385680.
  • Wu, H.; Zhang, X.; Ge, P. Modular design of a high-efficiency LED headlamp system based on freeform reflectors. Opt. Laser Technol. 2015, 72, 79–85. DOI: 10.1016/j.optlastec.2015.03.021.
  • Tsai, M.-S.; Sun, C.-C.; Yang, T.-H.; Wu, C.-S.; Lin, S.-K.; Lee, X.-H. Robust optical design for high-contrast cut-off line in vehicle forward lighting. OSA Continuum. 2019, 2, 1080–1088. DOI: 10.1364/OSAC.2.001080.
  • Ge, P.; Li, Y.; Chen, Z.; Wang, H. LED high-beam headlamp based on free-form microlenses. Appl. Opt. 2014, 53, 5570–5575. DOI: 10.1364/AO.53.005570.
  • Lee, J. H.; Byeon, J.; Go, D. J.; Park, J. R. Automotive adaptive front lighting requiring only on/off modulation of multi-array LEDs. Curr. Opt. Photonics 2017, 1, 207–213.
  • Li, X.; Li, Y.; Dong, J.; Chen, G.; Liang, C.; Ge, P. A light-emitting diode headlamp for motorcycles based on freeform micro-lenses. Lighting Res. Technol. 2015, 47, 495–506. DOI: 10.1177/1477153514559957.
  • Chang, Y.-P.; Chang, J.-K.; Chen, H.-A.; Chang, S.-H.; Liu, C.-N.; Han, P.; Cheng, W.-H. An advanced laser headlight module employing highly reliable glass phosphor. Opt. Express 2019, 27, 1808–1815. DOI: 10.1364/OE.27.001808.
  • Fang, Y.-C.; Tzeng, Y.-F.; Wen, C.-C.; Chen, C.-H.; Lee, H.-Y.; Chang, S.-H.; Su, Y.-L. A study of high-efficiency laser headlight design using gradient-index lens and liquid lens. Appl. Sci. 2020, 10, 7331. DOI: 10.3390/app10207331.
  • Sun, C.-C.; Lee, X.-H.; Moreno, I.; Lee, C.-H.; Yu, Y.-W.; Yang, T.-H.; Chung, T.-Y. Design of LED street lighting adapted for free-form roads. IEEE Photonics J. 2017, 9, 1–13. DOI: 10.1109/JPHOT.2017.2657742.
  • Wu, R.; Chang, S.; Zheng, Z.; Zhao, L.; Liu, X. Formulating the design of two freeform lens surfaces for point-like light sources. Opt. Lett. 2018, 43, 1619–1622. DOI: 10.1364/OL.43.001619.
  • Wu, R.; Yang, L.; Ding, Z.; Zhao, L.; Wang, D.; Li, K.; Wu, F.; Li, Y.; Zheng, Z.; Liu, X.; et al. Precise light control in highly tilted geometry by freeform illumination optics. Opt. Lett. 2019, 44, 2887–2890. DOI: 10.1364/OL.44.002887.
  • Wu, C.-S.; Chen, K.-Y.; Lee, X.-H.; Lin, S.-K.; Sun, C.-C.; Cai, J.-Y.; Yang, T.-H.; Yu, Y.-W. Design of an LED spot light system with a projection distance of 10 km. Crystals 2019, 9, 524. DOI: 10.3390/cryst9100524.
  • Wu, J.-K.; Zheng, K.-W.; Wang, Q.-Y.; Nie, X.-C.; Wang, R.; Xu, J.-T. Binary promoter improving the moderate-temperature adhesion of addition-cured liquid silicone rubber for thermally conductive potting. Materials 2022, 15, 5211. DOI: 10.3390/ma15155211.
  • Hopmann, C.; Röbig, M. High precision optics for LED applications made of liquid silicone rubber (LSR). Prog. Rubber Plast. Recycl. Technol. 2017, 33, 63–74. DOI: 10.1177/147776061703300201.