187
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discriminative spatial localisation in confocal reflectance and carbon dots-based fluorescence imaging using mixed-mode endoscopic scanner

, ORCID Icon, , , , , & show all

References

  • Kaur, M.; Lane, P.M.; Menon, C. Endoscopic optical imaging technologies and devices for medical purposes: State of the art. Appl. Sci. 2020, 10, 6865. DOI: 10.3390/app10196865.
  • Thouvenin, O.; Fink, M.; Boccara, A.C. Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy. J. Biomed. Opt. 2017, 22, 26004. DOI: 10.1117/1.JBO.22.2.026004.
  • Mavadia, J.; Xi, J.; Chen, Y.; Li, X. An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging. Biomed. Opt. Express. 2012, 3, 2851–2859. DOI: 10.1364/boe.3.002851.
  • Tang, Q.; Wang, J.; Frank, A.; Lin, J.; Li, Z.; Chen, C.; Jin, L.; Wu, T.; Greenwald, B.D.; Mashimo, H.; Chen, Y. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography. Biomed. Opt. Express. 2016, 7, 5218–5232. DOI: 10.1364/BOE.7.005218.
  • Al-Arashi, M.Y.; Salomatina, E.; Yaroslavsky, A.N. Multimodal confocal microscopy for diagnosing nonmelanoma skin cancers. Lasers Surg. Med. 2007, 39, 696–705. DOI: 10.1002/lsm.20578.
  • Wirth, D.J.; Yaroslavsky, A.N.; Snuderl, M.; Frosch, M.P.; Sheth, S.A.; Kwon, C.-S.; Curry, W. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging. J. Biomed. Opt. 2012, 17, 026012. DOI: 10.1117/1.JBO.17.2.026012.
  • Nishiyama, Y.; Matsumoto, T.; Lee, J.-W.; Saitou, T.; Imamura, T.; Moriyama, K.; Yamaguchi, A.; Iimura, T. Changes in the spatial distribution of sclerostin in the osteocytic lacuno-canalicular system in alveolar bone due to orthodontic forces, as detected on multimodal confocal fluorescence imaging analyses. Arch. Oral Biol. 2015, 60, 45–54. DOI: 10.1016/j.archoralbio.2014.08.013.
  • Hoogstins, C.E.S.; Tummers, Q.R.J.G.; Gaarenstroom, K.N.; de Kroon, C.D.; Trimbos, J.B.M.Z.; Bosse, T.; Smit, V.T.H.B.M.; Vuyk, J.; van de Velde, C.J.H.; Cohen, A.F.; Low, P. S.; Burggraaf, J.; Vahrmeijer, A. L. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer. Clin. Cancer Res. 2016, 22, 2929–2938. DOI: 10.1158/1078-0432.CCR-15-2640.
  • Ahn, M.; Kim, Y.; Song, C.; Gweon, D. Development of in vivo confocal microscope combined with reflection and fluorescence imaging modes. Int. J. Optomechatronics. 2010, 4, 325–341. DOI: 10.1080/15599612.2010.522760.
  • Tamada, Y.; Murata, T.; Hattori, M.; Oya, S.; Hayano, Y.; Kamei, Y.; Hasebe, M. Optical property analyses of plant cells for adaptive optics microscopy. Int. J. Optomechatronics. 2014, 8, 89–99. DOI: 10.1080/15599612.2014.901455.
  • Marcu, L. Fluorescence lifetime techniques in medical applications. Ann. Biomed. Eng. 2012, 40, 304–331. DOI: 10.1007/s10439-011-0495-y.
  • Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. DOI: 10.1021/ja040082h.
  • Liu, J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179–2195. DOI: 10.1021/acscentsci.0c01306.
  • Das, S.; Ngashangva, L.; Goswami, P. Carbon dots: An emerging smart material for analytical applications. Micromachines. 2021, 12, 84. DOI: 10.3390/mi12010084.
  • Du, J.; Xu, N.; Fan, J.; Sun, W.; Peng, X. Carbon dots for in vivo bioimaging and theranostics. Small. 2019, 15, e1805087. DOI: 10.1002/smll.201805087.
  • Cui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon dots: Synthesis, properties and applications. Nanomaterials. 2021, 11, 3419. DOI: 10.3390/nano11123419.
  • Yoo, D.; Park, Y.; Cheon, B.; Park, M.-H. Carbon dots as an effective fluorescent sensing platform for metal ion detection. Nanoscale Res. Lett. 2019, 14, 272. DOI: 10.1186/s11671-019-3088-6.
  • Wajidh, M.N.; Yap, C.C.; Issa, N.A.; Lau, K.S.; Tan, S.T.; Hj Jumali, M.H.; Mustapha, M.; Chia, C.H. Photovoltaic performance improvement of inverted type organic solar cell by co-introducing isopropanol and carbon quantum dots in photoactive layer. J. Mater. Sci. Mater. Electron. 2023, 34, 1075. DOI: 10.1007/s10854-023-10489-5.
  • Issa, N.A.; Yap, C.C.; Tan, S.T.; Hong, K.J.; Lau, K.S.; Khairulaman, F.L.; Chia, C.H.; Hj Jumali, M.H.; Chong, K.-K. Photovoltaic performance improvement of organic solar cell with ZnO nanorod arrays as electron transport layer using carbon quantum dots-incorporated photoactive layer. Opt. Mater. 2022, 132, 112876. DOI: 10.1016/j.optmat.2022.112876.
  • Nizam, N.U.M.; Hanafiah, M.M.; Mahmoudi, E.; Mohammad, A.W. Synthesis of highly fluorescent carbon quantum dots from rubber seed shells for the adsorption and photocatalytic degradation of dyes. Sci. Rep. 2023, 13, 12777. DOI: 10.1038/s41598-023-40069-w.
  • Shaari, N.; Kamarudin, S.K.; Bahru, R. Carbon and graphene quantum dots in fuel cell application: An overview. Int. J. Energy Res. 2021, 45, 1396–1424. DOI: 10.1002/er.5889.
  • Qi, J.; Zhang, R.; Liu, X.; Liu, Y.; Zhang, Q.; Cheng, H.; Li, R.; Wang, L.; Wu, X.; Li, B. Carbon dots as advanced drug-delivery nanoplatforms for antiinflammatory, antibacterial, and anticancer applications: A review. ACS Appl. Nano Mater. 2023, 6, 9071–9084. DOI: 10.1021/acsanm.3c01207.
  • Luo, X.; Han, Y.; Chen, X.; Tang, W.; Yue, T.; Li, Z. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends Food Sci. Technol. 2020, 95, 149–161. DOI: 10.1016/j.tifs.2019.11.017.
  • Yuan, T.; Meng, T.; He, P.; Shi, Y.; Li, Y.; Li, X.; Fan, L.; Yang, S. Carbon quantum dots: An emerging material for optoelectronic applications. J. Mater. Chem. C. 2019, 7, 6820–6835. DOI: 10.1039/C9TC01730E.
  • Nazri, N.A.A.; Azeman, N.H.; Luo, Y.; A Bakar, A.A. Carbon quantum dots for optical sensor applications: A review. Opt. Laser Technol. 2021, 139, 106928. DOI: 10.1016/j.optlastec.2021.106928.
  • Sonthanasamy, R.S.A.; Lazim, A.M.; Zuki, S.N.S.M.; Quay, D.H.X.; Tan, L.L. Starch-based C-dots from natural Gadong tuber as PH fluorescence label for optical biosensing of arginine. Opt. Laser Technol. 2020, 130, 106345. DOI: 10.1016/j.optlastec.2020.106345.
  • Su, W.; Wu, H.; Xu, H.; Zhang, Y.; Li, Y.; Li, X.; Fan, L. Carbon dots: A booming material for biomedical applications. Mater. Chem. Front. 2020, 4, 821–836. DOI: 10.1039/C9QM00658C.
  • Ali, H.; Ghosh, S.; Jana, N.R. Fluorescent carbon dots as intracellular imaging probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1617. DOI: 10.1002/wnan.1617.
  • Yan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchim. Acta. 2019, 186, 583. DOI: 10.1007/s00604-019-3688-y.
  • Wang, B.; Cai, H.; Waterhouse, G.I.N.; Qu, X.; Yang, B.; Lu, S. Carbon dots in bioimaging, biosensing and therapeutics: A comprehensive review. Small Sci. 2022, 2, 2200012. DOI: 10.1002/smsc.202200012.
  • Chung, S.; Revia, R.A.; Zhang, M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021, 33, e1904362. DOI: 10.1002/adma.201904362.
  • Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Muthuchamy, N.; Lee, Y.R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel. 2020, 275, 117821. DOI: 10.1016/j.fuel.2020.117821.
  • Atchudan, R.; Chandra Kishore, S.; Gangadaran, P.; Jebakumar Immanuel Edison, T.N.; Perumal, S.; Rajendran, R.L.; Alagan, M.; Al-Rashed, S.; Ahn, B.-C.; Lee, Y.R. Tunable fluorescent carbon dots from biowaste as fluorescence ink and imaging human normal and cancer cells. Environ. Res. 2022, 204, 112365. DOI: 10.1016/j.envres.2021.112365.
  • Vadia, F.Y.; Mehta, V.N.; Jha, S.; Park, T.J.; Malek, N.I.; Kailasa, S.K. Development of simple fluorescence analytical strategy for the detection of triazophos using greenish-yellow emissive carbon dots derived from Curcuma longa. J. Fluoresc. 2023, DOI: 10.1007/s10895-023-03548-x.
  • Liu, H.; Yang, J.; Li, Z.; Xiao, L.; Aryee, A.A.; Sun, Y.; Yang, R.; Meng, H.; Qu, L.; Lin, Y.; Zhang, X. Hydrogen-bond-induced emission of carbon dots for wash-free nucleus imaging. Anal. Chem. 2019, 91, 9259–9265. DOI: 10.1021/acs.analchem.9b02147.
  • Unnikrishnan, B.; Wu, R.-S.; Wei, S.-C.; Huang, C.-C.; Chang, H.-T. Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega. 2020, 5, 11248–11261. DOI: 10.1021/acsomega.9b04301.
  • Ye, X.; Xiang, Y.; Wang, Q.; Li, Z.; Liu, Z. A red emissive two-photon fluorescence probe based on carbon dots for intracellular PH detection. Small. 2019, 15, e1901673. DOI: 10.1002/smll.201901673.
  • Kajani, A.A.; Rafiee, L.; Javanmard, S.H.; Dana, N.; Jandaghian, S. Carbon dot incorporated mesoporous silica nanoparticles for targeted cancer therapy and fluorescence imaging. RSC Adv. 2023, 13, 9491–9500. DOI: 10.1039/D3RA00768E.
  • Marques, M.J.; Hughes, M.R.; Uceda, A.F.; Gelikonov, G.; Bradu, A.; Podoleanu, A. Endoscopic en-face optical coherence tomography and fluorescence imaging using correlation-based probe tracking. Biomed. Opt. Express. 2022, 13, 761–776. DOI: 10.1364/BOE.444170.
  • Li, Y.; Jing, J.; Yu, J.; Zhang, B.; Huo, T.; Yang, Q.; Chen, Z. Multimodality endoscopic optical coherence tomography and fluorescence imaging technology for visualization of layered architecture and subsurface microvasculature. Opt. Lett. 2018, 43, 2074–2077. DOI: 10.1364/ol.43.002074.
  • Lombardini, A.; Mytskaniuk, V.; Sivankutty, S.; Andresen, E.R.; Chen, X.; Wenger, J.; Fabert, M.; Joly, N.; Louradour, F.; Kudlinski, A.; Rigneault, H. High-resolution multimodal flexible coherent raman endoscope. Light Sci. Appl. 2018, 7, 10. DOI: 10.1038/s41377-018-0003-3.
  • Wartak, A.; Kelada, A.K.; Leon Alarcon, P.A.; Bablouzian, A.L.; Ahsen, O.O.; Gregg, A.L.; Wei, Y.; Bollavaram, K.; Sheil, C.J.; Farewell, E.; VanTol, S.; Smith, R.; Grahmann, P.; Baillargeon, A. R.; Gardecki, J. A.; Tearney, G. J. Dual-modality optical coherence tomography and fluorescence tethered capsule endomicroscopy. Biomed. Opt. Express. 2021, 12, 4308–4323. DOI: 10.1364/BOE.422453.
  • Pshenay-Severin, E.; Bae, H.; Reichwald, K.; Matz, G.; Bierlich, J.; Kobelke, J.; Lorenz, A.; Schwuchow, A.; Meyer-Zedler, T.; Schmitt, M.; Messerschmidt, B.; Popp, J. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light Sci. Appl. 2021, 10, 207. DOI: 10.1038/s41377-021-00648-w.
  • Scolaro, L.; Lorenser, D.; Madore, W.-J.; Kirk, R.W.; Kramer, A.S.; Yeoh, G.C.; Godbout, N.; Sampson, D.D.; Boudoux, C.; McLaughlin, R.A. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue. Biomed. Opt. Express. 2015, 6, 1767–1781. DOI: 10.1364/BOE.6.001767.
  • Leong, Y.S.; Mokhtar, M. H. H.; Zukhri, A. A.; Zan, M. S. D.; Arsad, N.; Reaz, M. B. I.; A. Bakar, A. A. Frequency-phase shift correction of interlaced lissajous trajectories for precise imaging in endoscopic scanning microscopy. Opt. Lasers Eng. 2022, 158, 107177. DOI: 10.1016/j.optlaseng.2022.107177.
  • Mokhtar, M.H.H.; Syms, R.R.A. Tailored fibre waveguides for precise two-axis lissajous scanning. Opt. Express. 2015, 23, 20804–20811. DOI: 10.1364/OE.23.020804.
  • Qian, K.; Guo, H.; Chen, G.; Ma, C.; Xing, B. Distribution of different surface modified carbon dots in pumpkin seedlings. Sci. Rep. 2018, 8, 7991. DOI: 10.1038/s41598-018-26167-0.
  • Nazri, N.A.; Azeman, N.H.; Bakar, M.H.; Mobarak, N.N.; Luo, Y.; Arsad, N.; Aziz, T.H.; Zain, A.R.; Bakar, A.A.A. Localized surface plasmon resonance decorated with carbon quantum dots and triangular ag nanoparticles for chlorophyll detection. Nanomaterials. 2022, 12, 35. DOI: 10.3390/nano12010035.
  • Nazri, N.A.; Azeman, N.H.; Bakar, M.H.; Mobarak, N.N.; Aziz, T.H.; Zain, A.R.; Arsad, N.; Luo, Y.; Bakar, A.A.A. Chlorophyll detection by localized surface plasmon resonance using functionalized carbon quantum dots triangle Ag nanoparticles. Nanomaterials. 2022, 12, 2999. DOI: 10.3390/nano12172999.
  • Im, J.; Chang, Y.; Lee, M.H.; Do, D.; Lee, K.; Gweon, D.; Song, C. Lissajous confocal fluorescent endomicroscopy with a lever mechanism and a frequency separation by an asymmetric polymer tube. Int. J. Optomechatronics. 2023, 17, 2238009. DOI: 10.1080/15599612.2023.2238009.
  • Roberts, D.A.; Syms, R.R.A.; Holmes, A.S.; Yeatman, E.M. Dual numerical aperture confocal operation of moving fibre bar code reader. Electron. Lett. 1999, 35, 1656–1658. DOI: 10.1049/el:19991139.
  • Roberts, D.A.; Syms, R.R.A. 1D and 2D laser line scan generation using a fiber optic resonant scanner. Proc. SPIE. 2000, 4075, 62–73. DOI: 10.1117/12.397936.
  • Mokhtar, M.H.H.; Syms, R.R.A. Resonant fiber scanner with optical feedback. Opt. Express. 2014, 22, 25629–25634. DOI: 10.1364/OE.22.025629.
  • Ser, J.P.; Lee, C.C.; Shahrim, F.; Bakar, A.A.A.; Mokhtar, M.H.H, Centre of Advanced Electronic and Communication Engineering Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia. Detection of back-scattered signal for optical fibre resonant scanner. JKUKM. 2019, 31, 169–175. DOI: 10.17576/jkukm-2019-31(1)-21.
  • Ng Hau Kwan, M.; Leo, C.P.; Arosa Senanayake, S.M.N.; Lim, G.K.; Tan, M.K. Carbon-dot dispersal in PVA thin film for food colorant sensing. J. Environ. Chem. Eng. 2020, 8, 103187. DOI: 10.1016/j.jece.2019.103187.
  • El-Shamy, A.G.; Zayied, H.S.S. New polyvinyl alcohol/carbon quantum dots (PVA/CQDs) nanocomposite films: Structural, optical and catalysis properties. Synth. Met. 2020, 259, 116218. DOI: 10.1016/j.synthmet.2019.116218.
  • Jiang, Z.C.; Lin, T.N.; Lin, H.T.; Talite, M.J.; Tzeng, T.T.; Hsu, C.L.; Chiu, K.P.; Lin, C.A.J.; Shen, J.L.; Yuan, C.T. A facile and low-cost method to enhance the internal quantum yield and external light-extraction efficiency for flexible light-emitting carbon-dot films. Sci. Rep. 2016, 6, 19991. DOI: 10.1038/srep19991.
  • Hu, T.; Wen, Z.; Wang, C.; Thomas, T.; Wang, C.; Song, Q.; Yang, M. Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes. Nanoscale Adv. 2019, 1, 1413–1420. DOI: 10.1039/C8NA00329G.
  • Abdullah Issa, M.; Abidin, Z. Sustainable development of enhanced luminescence polymer-carbon dots composite film for rapid Cd2+ removal from wastewater. Molecules. 2020, 25, 3541. DOI: 10.3390/molecules25153541.
  • Fu, C.; Qian, K.; Fu, A. Arginine-modified carbon dots probe for live cell imaging and sensing by increasing cellular uptake efficiency. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 350–355. DOI: 10.1016/j.msec.2017.03.084.
  • Guo, B.; Liu, G.; Wei, H.; Qiu, J.; Zhuang, J.; Zhang, X.; Zheng, M.; Li, W.; Zhang, H.; Hu, C.; Lei, B.; Liu, Y. The role of fluorescent carbon dots in crops: Mechanism and applications. SmartMat. 2022, 3, 208–225. DOI: 10.1002/smm2.1111.
  • Li, W.; Zheng, Y.; Zhang, H.; Liu, Z.; Su, W.; Chen, S.; Liu, Y.; Zhuang, J.; Lei, B. Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS Appl. Mater. Interfaces. 2016, 8, 19939–19945. DOI: 10.1021/acsami.6b07268.