0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optofluidic sorting of microparticles using Airy beams

, , , , , & show all

References

  • De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241. DOI: 10.1002/adma.200703183.
  • Qian, W.; Zhang, Y.; Chen, W. Capturing cancer: emerging microfluidic technologies for the capture and characterization of circulating tumor cells. Small 2015, 11, 3850–3872. DOI: 10.1002/smll.201403658.
  • Chen, X.; Lv, H. Intelligent control of nanoparticle synthesis on microfluidic chips with machine learning. NPG Asia Mater. 2022, 14, 69. DOI: 10.1038/s41427-022-00416-1.
  • Burke, J. M.; Zubajlo, R. E.; Smela, E.; White, I. M. High-throughput particle separation and concentration using spiral inertial filtration. Biomicrofluidics 2014, 8, 024105. DOI: 10.1063/1.4870399.
  • Fouet, M.; Mader, M.-A.; Iraïn, S.; Yanha, Z.; Naillon, A.; Cargou, S.; Gué, A.-M.; Joseph, P. Filter-less submicron hydrodynamic size sorting. Lab Chip. 2016, 16, 720–733. DOI: 10.1039/c5lc00941c.
  • Gu, Y.; Chen, C.; Mao, Z.; Bachman, H.; Becker, R.; Rufo, J.; Wang, Z.; Zhang, P.; Mai, J.; Yang, S.; et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 2021, 7, eabc0467. DOI: 10.1126/sciadv.abc0467.
  • Zhang, N.; Zuniga-Hertz, J. P.; Zhang, E. Y.; Gopesh, T.; Fannon, M. J.; Wang, J.; Wen, Y.; Patel, H. H.; Friend, J. Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab Chip. 2021, 21, 904–915. DOI: 10.1039/d0lc01012j.
  • Wu, Y.; Chattaraj, R.; Ren, Y.; Jiang, H.; Lee, D. Label-free multitarget separation of particles and cells under flow using acoustic, electrophoretic, and hydrodynamic forces. Anal. Chem. 2021, 93, 7635–7646. DOI: 10.1021/acs.analchem.1c00312.
  • Tayebi, M.; Yang, D.; Collins, D. J.; Ai, Y. Deterministic sorting of submicrometer particles and extracellular vesicles using a combined electric and acoustic field. Nano Lett. 2021, 21, 6835–6842. DOI: 10.1021/acs.nanolett.1c01827.
  • Xu, X.; Yang, Y.; Chen, L.; Chen, X.; Wu, T.; Li, Y.; Liu, X.; Zhang, Y.; Li, B. Optomechanical Wagon-Wheel effects for bidirectional sorting of dielectric nanoparticles. Laser Photon. Rev. 2021, 15, 2000546. DOI: 10.1002/lpor.202000546.
  • Pin, C.; Otsuka, R.; Sasaki, K. Optical transport and sorting of fluorescent nanodiamonds inside a tapered glass capillary: optical sorting of nanomaterials at the Femtonewton scale. ACS Appl. Nano Mater. 2020, 3, 4127–4134. DOI: 10.1021/acsanm.0c00274.
  • MacDonald, M. P.; Spalding, G. C.; Dholakia, K. Microfluidic sorting in an optical lattice. Nature 2003, 426, 421–424. DOI: 10.1038/nature02144.
  • Nan, F.; Yan, Z. Optical sorting at the single-particle level with single-nanometer precision using coordinated intensity and phase gradient forces. ACS Nano. 2020, 14, 7602–7609. DOI: 10.1021/acsnano.0c03478.
  • Woerdemann, M.; Alpmann, C.; Esseling, M.; Denz, C. Advanced optical trapping by complex beam shaping. Laser Photon. Rev. 2013, 7, 839–854. DOI: 10.1002/lpor.201200058.
  • Luo, H.; Fang, X.; Li, C.; Dai, X.; Ru, N.; You, M.; He, T.; Wu, P. C.; Wang, Z.; Shi, Y.; et al. 1 nm-resolution sorting of sub-10 nm nanoparticles using a dielectric metasurface with toroidal responses. Small Science 2023, 3, 2300100. DOI: 10.1002/smsc.202370017.
  • Zhang, T.; Mahdy, M. R. C.; Liu, Y.; Teng, J. H.; Lim, C. T.; Wang, Z.; Qiu, C.-W. All-optical chirality-sensitive sorting via reversible lateral forces in interference fields. ACS Nano. 2017, 11, 4292–4300. DOI: 10.1021/acsnano.7b01428.
  • Lin, W.-Y.; Lin, Y.-H.; Lee, G.-B. Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces. Microfluid. Nanofluid. 2010, 8, 217–229. DOI: 10.1007/s10404-009-0457-y.
  • Lee, K. S.; Palatinszky, M.; Pereira, F. C.; Nguyen, J.; Fernandez, V. I.; Mueller, A. J.; Menolascina, F.; Daims, H.; Berry, D.; Wagner, M.; et al. An automated raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 2019, 4, 1035–1048. DOI: 10.1038/s41564-019-0394-9.
  • Liu, S.; Qu, Z.; Zhao, X.; Wang, J.-L. Fast and versatile optical force measurement with digitally modulated stimulus in holographic optical tweezers. Optics Laser Technol. 2023, 167, 109809. DOI: 10.1016/j.optlastec.2023.109809.
  • Qu, Z.; Liu, S.; Fan, X.; Fang, C.; Wang, J.-L.; Zhao, X. Optimized Hologram Generation Method for Real-Time Spontaneous Manipulation. AIP Adv. 2023, 13, 095216. DOI: 10.1063/5.0162458.
  • Baumgartl, J.; Mazilu, M.; Dholakia, K. Optically mediated particle clearing using airy wavepackets. Nature Photon. 2008, 2, 675–678. DOI: 10.1038/nphoton.2008.201.
  • Siviloglou, G. A.; Broky, J.; Dogariu, A.; Christodoulides, D. N. Observation of accelerating airy beams. Phys. Rev. Lett. 2007, 99, 213901. DOI: 10.1103/PhysRevLett.99.213901.
  • Baumgartl, J.; Hannappel, G. M.; Stevenson, D. J.; Day, D.; Gu, M.; Dholakia, K. Optical redistribution of microparticles and cells between microwells. Lab Chip. 2009, 9, 1334–1336. DOI: 10.1039/b901322a.
  • Moradi, H.; Jabbarpour, M.; Abdollahpour, D.; Hajizadeh, F. 3D optical trapping by a tightly focused circular airy beam. Opt. Lett. 2022, 47, 4115–4118. DOI: 10.1364/OL.464052.
  • Efremidis, N. K.; Chen, Z.; Segev, M.; Christodoulides, D. N. Airy beams and accelerating waves: an overview of recent advances. Optica 2019, 6, 686–701. DOI: 10.1364/OPTICA.6.000686.
  • Makris, K. G.; Kaminer, I.; El-Ganainy, R.; Efremidis, N. K.; Chen, Z.; Segev, M.; Christodoulides, D. N. Accelerating diffraction-free beams in photonic lattices. Opt. Lett. 2014, 39, 2129–2132. DOI: 10.1364/OL.39.002129.
  • Yang, Y.; Ren, Y.-X.; Chen, M.; Arita, Y.; Rosales-Guzmán, C. Optical trapping with structured light: a review. Adv. Photon. 2021, 3, 034001. DOI: 10.1117/1.AP.3.3.034001.
  • Zhang, P.; Prakash, J.; Zhang, Z.; Mills, M. S.; Efremidis, N. K.; Christodoulides, D. N.; Chen, Z. Trapping and guiding microparticles with morphing autofocusing airy beams. Opt. Lett. 2011, 36, 2883–2885. DOI: 10.1364/OL.36.002883.
  • Richardson, A. C.; Reihani, S. N. S.; Oddershede, L. B. Non-harmonic potential of a single beam optical trap. Opt. Express. 2008, 16, 15709–15717. DOI: 10.1364/oe.16.015709.
  • Florin, E.-L.; Pralle, A.; Stelzer, E. H. K.; Hörber, J. K. H. Photonic force microscope calibration by thermal noise analysis. Appl. Phys. A 1998, 66, S75–S78. DOI: 10.1007/s003390051103.
  • Davis, J. A.; Mitry, M. J.; Bandres, M. A.; Ruiz, I.; McAuley, K. P.; Cottrell, D. M. Generation of accelerating airy and accelerating parabolic beams using phase-only patterns. Appl. Opt. 2009, 48, 3170–3176. DOI: 10.1364/ao.48.003170.
  • Latychevskaia, T.; Schachtler, D.; Fink, H.-W. Creating airy beams employing a transmissive spatial light modulator. Appl. Opt. 2016, 55, 6095–6101. DOI: 10.1364/AO.55.006095.
  • Di Leonardo, R.; Ianni, F.; Ruocco, G. Computer generation of optimal holograms for optical trap arrays. Opt. Express. 2007, 15, 1913–1922. DOI: 10.1364/oe.15.001913.
  • Godazgar, T.; Shokri, R.; Reihani, S. N. S. Potential mapping of optical tweezers. Opt. Lett. 2011, 36, 3284–3286. DOI: 10.1364/OL.36.003284.