424
Views
10
CrossRef citations to date
0
Altmetric
Original Investigation

Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase-3

, , , , , & show all
Pages 445-456 | Received 20 May 2016, Accepted 08 Aug 2016, Published online: 10 Oct 2016

References

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM. 2011. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 475:91–95.
  • Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG. 2008a. A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell. 132:125–136.
  • Beaulieu JM, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC, Gainetdinov RR, Caron MG. 2008b. Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci USA. 105:1333–1338.
  • Beurel E, Song L, Jope RS. 2011. Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol Psychiatry. 16:1068–1070.
  • Beurel E, Kaidanovich-Beilin O, Yeh WI, Song L, Palomo V, Michalek SM, Woodgett JR, Harrington LE, Eldar-Finkelman H, Martinez A, et al. 2013. Regulation of Th1 cells and experimental autoimmune encephalomyelitis by glycogen synthase kinase-3. J Immunol. 190:5000–5011.
  • Beurel E, Harrington LE, Jope RS. 2013. Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol Psychiatry. 73:622–630.
  • Beurel E, Grieco SF, Jope RS. 2015. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 148:114–131.
  • Bombail V, Qing W, Chapman KE, Holmes MC. 2014. Prevention of 5-hydroxytryptamine2C receptor RNA editing and alternate splicing in C57BL/6 mice activates the hypothalamic-pituitary-adrenal axis and alters mood. Eur J Neurosci. 40:3663–3673.
  • Brachman RA, McGowan JC, Perusini JN, Lim SC, Pham TH, Faye C, Gardier AM, Mendez-David I, David DJ, Hen R, et al. 2016. Ketamine as a prophylactic against stress-induced depressive-like behavior. Biol Psychiatry. 79:776–786.
  • Can A, Blackwell RA, Piantadosi SC, Dao DT, O'Donnell KC, Gould TD. 2011. Antidepressant-like responses to lithium in genetically diverse mouse strains. Genes Brain Behav. 10:434–443.
  • Chagraoui A, Thibaut F, Skiba M, Thuillez C, Bourin M. 2016. 5-HT2C receptors in psychiatric disorders: a review. Prog Neuropsychopharmacol Biol Psychiatry. 66:120–135.
  • Chiu CT, Scheuing L, Liu G, Liao HM, Linares GR, Lin D, Chuang DM. 2014. The mood stabilizer lithium potentiates the antidepressant-like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress. Int J Neuropsychopharmacol. 18:pyu102.
  • Eacker SM, Keuss MJ, Berezikov E, Dawson VL, Dawson TM. 2011. Neuronal activity regulates hippocampal miRNA expression. PLoS One. 6:e25068.
  • Eom TY, Jope RS. 2009. Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3alpha/beta impairs in vivo neural precursor cell proliferation. Biol Psychiatry. 66:494–502.
  • Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, et al. 2008. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 32:140–144.
  • Ghasemi M, Raza M, Dehpour AR. 2010. NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. J Psychopharmacol (Oxford). 24:585–594.
  • Gould TD, Einat H, Bhat R, Manji HK. 2004. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol. 7:387–390.
  • Hinske LC, França GS, Torres HA, Ohara DT, Lopes-Ramos CM, Heyn J, Reis LF, Ohno-Machado L, Kreth S, Galante PA. 2014. miRIAD-integrating microRNA inter- and intragenic data. Database (Oxford). 2014:bau099.
  • Jope RS. 2011. Glycogen synthase kinase-3 in the etiology and treatment of mood disorders. Front Mol Neurosci. 4:16.
  • Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H. 2004. Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry. 55:781–784.
  • Koike H, Iijima M, Chaki S. 2011. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res. 224:107–111.
  • Li G, Liu T, Kong X, Wang L, Jin X. 2014. Hippocampal glycogen synthase kinase 3β is critical for the antidepressant effect of cyclin-dependent kinase 5 inhibitor in rats. J Mol Neurosci. 54:92–99.
  • Li X, Zhu W, Roh MS, Friedman AB, Rosborough K, Jope RS. 2004. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology. 29:1426–1431.
  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS. 2010. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 329:959–964.
  • Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK. 2013. GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology. 38:2268–2277.
  • Ma XC, Dang YH, Jia M, Ma R, Wang F, Wu J, Gao CG, Hashimoto K. 2013. Long-lasting antidepressant action of ketamine, but not glycogen synthase kinase-3 inhibitor SB216763, in the chronic mild stress model of mice. PLoS One. 8:e56053.
  • Maeng S, Zarate CA, Jr., Du J, Schloesser RJ, McCammon J, Chen G, Manji HK. 2008. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 63:349–352.
  • Malinow R, Malenka RC. 2002. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 25:103–126.
  • McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR. 2005. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. Embo J. 24:1571–1583.
  • Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB. 2015. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry. 172:950–966.
  • Niciu MJ, Henter ID, Luckenbaugh DA, Zarate CA Jr., Charney DS. 2014. Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: ketamine and other compounds. Annu Rev Pharmacol Toxicol. 54:119–139.
  • O’Brien WT, Harper AD, Jové F, Woodgett JR, Maretto S, Piccolo S, Klein PS. 2004. Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioural and molecular effects of lithium. J Neurosci. 24:6791–6798.
  • Pan JQ, Lewis MC, Ketterman JK, Clore EL, Riley M, Richards KR, Berry-Scott E, Liu X, Wagner FF, Holson EB, et al. 2011. AKT kinase activity is required for lithium to modulate mood-related behaviors in mice. Neuropsychopharmacology. 36:1397–1411.
  • Plotkin B, Kaidanovich O, Talior I, Eldar-Finkelman H. 2003. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. J Pharmacol Exp Ther. 305:974–980.
  • Polter A, Beurel E, Yang S, Garner R, Song L, Miller CA, Sweatt JD, McMahon L, Bartolucci AA, Li X, et al. 2010. Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances. Neuropsychopharmacology. 35:1761–1774.
  • Rosa AO, Kaster MP, Binfaré RW, Morales S, Martín-Aparicio E, Navarro-Rico ML, Martinez A, Medina M, García AG, López MG, et al. 2008. Antidepressant-like effect of the novel thiadiazolidinone NP031115 in mice. Prog Neuropsychopharmacol Biol Psychiatry. 32:1549–1556.
  • Shapira M, Licht A, Milman A, Pick CG, Shohami E, Eldar-Finkelman H. 2007. Role of glycogen synthase kinase-3beta in early depressive behavior induced by mild traumatic brain injury. Mol Cell Neurosci. 34:571–577.
  • Silva R, Mesquita AR, Bessa J, Sousa JC, Sotiropoulos I, Leão P, Almeida OF, Sousa N. 2008. Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3beta. Neuroscience. 152:656–669.
  • Scheuing L, Chiu CT, Liao HM, Chuang DM. 2015. Antidepressant mechanism of ketamine: perspective from preclinical studies. Front Neurosci. 9:249.
  • Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D. 1995. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature. 374:542–546.
  • Tizabi Y, Bhatti BH, Manaye KF, Das JR, Akinfiresoye L. 2012. Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar-Kyoto rats. Neuroscience. 213:72–80.
  • Van Oekelen D, Luyten WH, Leysen JE. 2003. 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci. 72:2429–2449.
  • Yang C, Zhou ZQ, Gao ZQ, Shi JY, Yang JJ. 2013. Acute increases in plasma mammalian target of rapamycin, glycogen synthase kinase-3β, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients. Biol Psychiatry. 73:e35–e36.
  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, et al. 2016. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 533:481–486.
  • Zhou W, Dong L, Wang N, Shi JY, Yang JJ, Zuo ZY, Zhou ZQ. 2014. Akt mediates GSK-3β phosphorylation in the rat prefrontal cortex during the process of ketamine exerting rapid antidepressant actions. Neuroimmunomodulation. 21:183–188.
  • Ziats MN, Rennert OM. 2014. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry. 19:848–852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.