685
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Microglia and HPA axis in depression: An overview of participation and relationship

, , , , , & ORCID Icon show all
Pages 165-182 | Received 10 Nov 2020, Accepted 01 Jun 2021, Published online: 07 Jul 2021

References

  • Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T. 2008. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology. 55(8):1355–1363.
  • Ahmed Z, Shaw G, Sharma VP, Yang C, Mcgowan E, Dickson DW. 2007. Actin-binding proteins coronin-1a and IBA-1 are effective microglial markers for immunohistochemistry. J Histochem Cytochem. 55(7):687–700.
  • Alzarea S, Rahman S. 2018. Effects of alpha-7 nicotinic allosteric modulator PNU 120596 on depressive-like behavior after lipopolysaccharide administration in mice. Prog Neuropsychopharmacol Biol Psychiatry. 86:218–228.
  • Anacker C, Zunszain PA, Carvalho LA, Pariante CM. 2011. The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology. 36(3):415–425.
  • Athira K, Mohanrao R, Chandran I, Lahkar M, Sinha S, Naidu VGM. 2018. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav Brain Res. 344:73–84.
  • Béchade C, Cantaut-Belarif Y, Bessis A. 2013. Microglial control of neuronal activity. Front Cell Neurosci. 7:1–7.
  • Bellavance MA, Rivest S. 2014. The HPA - immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front Immunol. 5:1–14.
  • Berkenbosch F, Van Oers JD, Rey A, Tilders F, Besedovsky H. 1987. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science. 238:524–526.
  • Bhatia HS, Baron J, Hagl S, Eckert GP, Fiebich BL. 2016. Rice bran derivatives alleviate microglia activation: possible involvement of MAPK pathway. J Neuroinflammation. 13:1–16.
  • Biber K, Neumann H, Inoue K, Boddeke HWGM. 2007. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci. 30(11):596–602.
  • Borsini A, Zunszain PA, Thuret S, Pariante CM. 2015. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 38(3):145–157.
  • Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS. 2000. Hippocampal volume reduction in major depression. Am J Psychiatry. 157(1):115–117.
  • Brites D, Fernandes A. 2015. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 9:1–20.
  • Busillo JM, Azzam KM, Cidlowski JA. 2011. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem. 286(44):38703–38713.
  • Caldeira Cáu, Oliveira AF, Cunha C, Vaz AR, FalcãO AS, Fernandes A, Brites D. 2014. Microglia change from a reactive to an age-like phenotype with the time in culture. Front Cell Neurosci. 8:1–16.
  • Carabotti M, Scirocco A, Maselli MA, Severi C. 2015. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 28(2):203–209.
  • Caraffa A, Gallenga CE, Kritas SK, Ronconi G, Conti P. 2019. Impact of mast cells in systemic lupus erythematosus: can inflammation be inhibited? J Biol Regul Homeost Agents. 33(3):669–673.
  • Carroll BJ, Cassidy F, Naftolowitz D, Tatham NE, Wilson WH, Iranmanesh A, Liu PY, Veldhuis JD. 2007. Pathophysiology of hypercortisolism in depression. Acta Psychiatr Scand. 115(s433):90–103.
  • Chen M, Guilarte TR. 2008. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther. 118(1):1–17.
  • Chiu WC, Su YP, Su KP, Chen PC. 2017. Recurrence of depressive disorders after interferon-induced depression. Transl Psychiatry. 7:1–9.
  • Chrousos GP, Gold PW. 1992. The concepts of stress and stress system disorders overview of homeostasis. Jama. 267(9):1244–1252.
  • Colonna M, Butovsky O. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 35:441–468.
  • Conti P, Lauritano D, Caraffa A, Gallenga CE, Kritas SK, Ronconi G, Martinotti S. 2020. Microglia and mast cells generate proinflammatory cytokines in the brain and worsen inflammatory state: suppressor effect of IL-37. Eur J Pharmacol. 875:173035..
  • Cosgriff JP, Abbott RM, Oakley-Browne MA, Joyce PR. 1990. Cortisol hypersecretion predicts early depressive relapse after recovery with electroconvulsive therapy. Biol Psychiatry. 28(11):1007–1010.
  • Coutinho AE, Chapman KE. 2011. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 335(1):2–13.
  • Cruz-Topete D, Cidlowski JA. 2015. One hormone, two actions: Anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 22(1-2):20–32.
  • David DJ, Samuels BA, Rainer Q, Wang J-W, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux J-P, et al. 2009. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 62(4):479–493.
  • de Kloet ER, Sibug RM, Helmerhorst FM, Schmidt MV, Schmidt M. 2005. Stress, genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev. 29(2):271–281.
  • DeMorrow S. 2018. Role of the hypothalamic – pituitary – adrenal axis in health and disease. Int J Mol Sci. 19:1–5.
  • Di Filippo M, Chiasserini D, Gardoni F, Viviani B, Tozzi A, Giampà C, Costa C, Tantucci M, Zianni E, Boraso M, et al. 2013. Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol Dis. 52:229–236.
  • Dong H, Keegan JM, Hong E, Gallardo C, Montalvo-Ortiz J, Wang B, Rice KC, Csernansky J. 2018. Corticotrophin releasing factor receptor 1 antagonists prevent chronic stress- induced behavioral changes and synapse loss in aged rats. Psychoneuroendocrinology. 90:92–101.
  • Doorn KJ, Brevé JJP, Drukarch B, Boddeke HW, Huitinga I, Lucassen PJ, van Dam A-M. 2015. Brain region-specific gene expression profiles in freshly isolated rat microglia. Front Cell Neurosci. 9:1–11.
  • Douma EH, de Kloet ER. 2020. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev. 108:48–77.
  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL. 2010. A meta-analysis of cytokines in major depression. Biol Psychiatry. 67(5):446–457.
  • Duan C-M, Zhang J-R, Wan T-F, Wang Y, Chen H-S, Liu L. 2020. SRT2104 attenuates chronic unpredictable mild stress-induced depressive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav Brain Res. 378:112296..
  • Dwivedi Y. 2014. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. Dialogues Clin Neurosci. 16(1):43–61.
  • Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 18(7):965–977.
  • Espinosa-Oliva AM, de Pablos RM, Villarán RF, Argüelles S, Venero JL, Machado A, Cano J. 2011. Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiol Aging. 32(1):85–102.
  • Farooq RK, Tanti A, Ainouche S, Roger S, Belzung C, Camus V. 2018. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology. 97:120–130.
  • Felger JC, Lotrich FE. 2013. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 246:199–229.
  • Flores BH, Kenna H, Keller J, Solvason HB, Schatzberg AF. 2006. Clinical and biological effects of mifepristone treatment for psychotic depression. Neuropsychopharmacology. 31(3):628–636.
  • Franchimont D. 2004. Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann N Y Acad Sci. 1024:124–137.
  • Frank MG, Hershman SA, Weber MD, Watkins LR, Maier SF. 2014. Chronic exposure to exogenous glucocorticoids primes microglia to pro-inflammatory stimuli and induces NLRP3 mRNA in the hippocampus. Psychoneuroendocrinology 40:191–200.
  • Frank MG, Miguel ZD, Watkins LR, Maier SF. 2010. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun. 24(1):19–30.
  • Freitas AE, Bettio LEB, Neis VB, Santos DB, Ribeiro CM, Rosa PB, Farina M, Rodrigues ALS. 2014. Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuropsychopharmacol Biol Psychiatry 50:143–150.
  • Fu R, Shen Q, Xu P, Luo JJ, Tang Y. 2014. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol. 49(3):1422–1434.
  • Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. 2013. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Reports. 65(6):1655–1662.
  • Gaffey AE, Bergeman CS, Clark LA, Wirth MM. 2016. Aging and the HPA axis: stress and resilience in older adults. Neurosci Biobehav Rev. 68:928–945.
  • Gallenga CE, Pandolfi F, Caraffa A, Kritas SK, Ronconi G, Toniato E, Martinotti S, Conti P. 2019. Interleukin-1 family cytokines and mast cells: activation and inhibition. J Biol Regul Homeost Agents. 33(1):1–6.
  • Gao M, Hu P, Cai Z, Wu Y, Wang D, Hu W, Xu X, Zhang Y, Lu X, Chen D, et al. 2019. Identification of a microglial activation-dependent antidepressant effect of amphotericin B liposome. Neuropharmacology. 151:33–44.
  • Gehrmann J, Matsumoto Y, Kreutzberg GW. 1995. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev. 20(3):269–287.
  • Gertig U, Hanisch U-K. 2014. Microglial diversity by responses and responders. Front Cell Neurosci. 8:1–9.
  • Gibbons JL, McHugh PR. 1962. Plasma cortisol in depressive illness. J Psychiatr Res. 1:162–171.
  • Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. 2013. Origin and differentiation of microglia. Front Cell Neurosci. 7:1–14.
  • Gjerstad JK, Lightman SL, Spiga F. 2018. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress. 21(5):403–416.
  • González H, Elgueta D, Montoya A, Pacheco R. 2014. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol. 274(1–2):1–13.
  • Goshen I, Yirmiya R. 2009. Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol. 30(1):30–45.
  • Greter M, Merad M. 2013. Regulation of microglia development and homeostasis. Glia. 61(1):121–127.
  • Hamadi N, Sheikh A, Madjid N, Lubbad L, Amir N, Shehab SA-DS, Khelifi-Touhami F, Adem A. 2016. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short‑term bilateral adrenalectomy. BMC Neurosci. 17(1):1–18.
  • Han Y, Zhang L, Wang Q, Zhang D, Zhao Q, Zhang J, Xie L, Liu G, You Z. 2019. Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology. 107:37–45.
  • Hanisch U-K. 2013. Functional diversity of microglia – how heterogeneous are they to begin with ? Front. Cell Neurosci. 7:1–18.
  • Hansson PB, Murison R, Lund A, Hammar A. 2015. Cognitive functioning and cortisol profiles in first episode major depression. Scand J Psychol. 56(4):379–383.
  • Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK. 2020. Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov Disord. 35(1):20–33.
  • Harkness KL, Bruce AE, Lumley MN. 2006. The role of childhood abuse and neglect in the sensitization to stressful life events in adolescent depression. J Abnorm Psychol. 115(4):730–741.
  • Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. 2017. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 79:119–133.
  • Herman JP, Dolgas CM, Carlson SL. 1998. Ventral subiculum regulates hypothalamo-pituitary-adrenocortical and behavioural responses to cognitive stressors. Neuroscience. 86(2):449–459.
  • Herman JP, McKlveen JM, Solomon MB, Carvalho-Netto E, Myers B. 2012. Neural regulation of the stress response: glucocorticoid feedback mechanisms. Braz J Med Biol Res. 45(4):292–298.
  • Hermoso MA, Matsuguchi T, Smoak K, Cidlowski JA. 2004. Glucocorticoids and tumor necrosis factor alpha cooperatively regulate toll-like receptor 2 gene expression. Mol Cell Biol. 24(11):4743–4756.
  • Hinkelmann K, Moritz S, Botzenhardt J, Riedesel K, Wiedemann K, Kellner M, Otte C. 2009. Cognitive impairment in major depression: association with salivary cortisol. Biol Psychiatry 66(9):879–885.
  • Holsboer F, Ising M. 2008. Central CRH system in depression and anxiety-evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol. 583(2–3):350–357.
  • Horchar MJ, Wohleb ES. 2019. Glucocorticoid receptor antagonism prevents microglia-mediated neuronal remodeling and behavioral despair following chronic unpredictable stress. Brain Behav Immun. 81:329–340.
  • Iob E, Kirschbaum C, Steptoe A. 2019. Persistent depressive symptoms, HPA-axis hyperactivity, and inflammation: the role of cognitive-affective and somatic symptoms. Mol. Psychiatry:1–11.
  • Jankord R, Herman JP. 2008. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci. 1148(1):64–73.
  • Juruena MF, Cleare AJ, Papadopoulos AS, Poon L, Lightman S, Pariante CM. 2006. Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacology (Berl). 189(2):225–235.
  • Juruena MF, Cleare J, Pariante M. 2004. The hypothalamic pituitary adrenal axis, glucocorticoid receptor function and relevance to depression. Braz J Psychiatry. 26(3):189–201.
  • Juruena MF. 2014. Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy Behav. 38:148–159.
  • Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. 2018. Microglia: housekeeper of the central nervous system. Cell Mol Neurobiol. 38(1):53–71.
  • Kato TA, Hayakawa K, Monji A, Kanba S. 2013. Missing and possible link between neuroendocrine factors, neuropsychiatric disorders, and microglia. Front Integr Neurosci. 7:1–16.
  • Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM, Schatzberg AF. 2017. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 22(4):527–536.
  • Kendler KS, Hettema JM, Butera F, Gardner CO, Prescott CA. 2003. Life event dimensions of loss, humiliation, entrapment, and danger in the prediction of onsets of major depression and generalized anxiety. Arch Gen Psychiatry. 60(8):789–796.
  • Kennis M, Gerritsen L, van Dalen M, Williams A, Cuijpers P, Bockting C. 2020. Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry. 25(2):321–338.
  • Kitamura Y, Araki H, Gomita Y. 2002. Influence of ACTH on the effects of imipramine, desipramine and lithium on duration of immobility of rats in the forced swim test. Pharmacol Biochem Behav. 71(1–2):63–69.
  • Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R. 2014. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 19(6):699–709.
  • Lannan EA, Galliher-Beckley AJ, Scoltock AB, Cidlowski JA. 2012. Proinflammatory actions of glucocorticoids: glucocorticoids and TNFα coregulate gene expression in vitro and in vivo. Endocrinology. 153(8):3701–3712.
  • Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA. 2003. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci. 100:8514–8519.
  • Li X, Wu T, Yu Z, Li T, Zhang J, Zhang Z. 2018. Apocynum venetum leaf extract reverses depressive-like behaviors in chronically stressed rats by inhibiting oxidative stress and apoptosis. Biomed. Pharmacother. 100:394–406.
  • Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. 2018. Regulatory and mechanistic actions of glucocorticoids on T and inflammatory cells. Front Endocrinol. 9:1–14.
  • Littlefield AM, Setti SE, Priester C, Kohman RA. 2015. Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J Neuroinflammation. 12:1–12.
  • Liu D, Tang Q-Q, Yin C, Song Y, Liu Y, Yang J-X, Liu H, Zhang Y-M, Wu S-Y, Song Y, et al. 2018. Brain-derived neurotrophic factor-mediated projection-specific regulation of depressive-like and nociceptive behaviors in the mesolimbic reward circuitry. Pain. 159(1):175–188.
  • Liu Y, Wang Y, Jiang C. 2017. Inflammation: the common pathway of stress-related diseases. Front Hum Neurosci. 11:1–11.
  • Liu YU, Ying Y, Li Y, Eyo UB, Chen T, Zheng J, Umpierre AD, Zhu J, Bosco DB, Dong H, et al. 2019. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci. 22(11):1771–1781.
  • Machado MO, Oriolo G, Bortolato B, Köhler CA, Maes M, Solmi M, Grande I, Martín-Santos R, Vieta E, Carvalho AF, et al. 2017. Biological mechanisms of depression following treatment with interferon for chronic hepatitis C: a critical systematic review. J Affect Disord. 209:235–245.
  • Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D. 2018. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K + channel THIK-1. Neuron. 97(2):299–312.
  • Mahar I, Bambico FR, Mechawar N, Nobrega JN. 2014. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev. 38:173–192.
  • Majidi J, Kosari-Nasab M, Salari A-A. 2016. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice. Brain Res Bull. 120:1–13.
  • Matthews SG. 2002. Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrinol Metab. 13(9):373–380.
  • Mayer AMS, Murphy J, MacAdam D, Osterbauer C, Baseer I, Hall ML, Feher D, Williams P. 2016. Classical and alternative activation of Cyanobacterium oscillatoria sp. lipopolysaccharide-treated rat microglia in vitro. Toxicol Sci. 149(2):484–495.
  • McEwen BS, Morrison JH. 2013. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron. 79(1):16–29.
  • McEwen BS. 2000. Effects of adverse experiences for brain structure and function. Biol Psychiatry. 48(8):721–731.
  • McKim DB, Niraula A, Tarr AJ, Wohleb ES, Sheridan JF, Godbout JP. 2016. Neuroinflammatory dynamics underlie memory impairments after repeated social defeat. J Neurosci. 36(9):2590–2604.
  • Ménard C, Hodes GE, Russo SJ. 2016. Pathogenesis of depression: insights from human and rodent studies. Neuroscience. 321:138–162.
  • Ménard C, Pfau ML, Hodes GE, Russo SJ. 2017. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology. 42(1):62–80.
  • Miller AH, Maletic V, Raison CL. 2009. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 65(9):732–741.
  • Müller N, Weidinger E, Leitner B, Schwarz MJ. 2015. The role of inflammation in schizophrenia. Front Neurosci. 9:1–9.
  • Munck A, Guyre PM, Holbrook NJ. 1984. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 5(1):25–44.
  • Munhoz CD, Lepsch LB, Kawamoto EM, Malta MB, Lima LDS, Avellar MCW. 2006. Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci. 26(14):3813–3820.
  • Munhoz CD, Sorrells SF, Caso JR, Scavone C, Sapolsky RM. 2010. Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner. J Neurosci. 30(41):13690–13698.
  • Belvederi Murri M, Pariante C, Mondelli V, Masotti M, Atti AR, Mellacqua Z, Antonioli M, Ghio L, Menchetti M, Zanetidou S, et al. 2014. HPA axis and aging in depression: systematic review and meta-analysis. Psychoneuroendocrinology. 41:46–62.
  • Nair A, Bonneau RH. 2006. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol. 171(1-2):72–85.
  • Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, Rudi K. 2014. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 26(8):1155–1162.
  • Neiva I, Malva JO, Valero J. 2014. Can we talk about microglia without neurons? A discussion of microglial cell autonomous properties in culture. Front Cell Neurosci. 8:1–5.
  • Nie X, Kitaoka S, Tanaka K, Segi-Nishida E, Imoto Y, Ogawa A, Nakano F, Tomohiro A, Nakayama K, Taniguchi M, et al. 2018. The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron. 99(3):464–479.e7.
  • Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308(5726):1314–1319.
  • Norden DM, Muccigrosso MM, Godbout JP. 2015. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology. 96:29–41.
  • Norman GJ, Karelina K, Zhang N, Walton JC, Morris JS, DeVries AC. 2010. Stress and IL-1 b contribute to the development of depressive-like behavior following peripheral nerve injury. Mol Psychiatry. 15(4):404–414.
  • O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG. 2007. Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J. Psychiatr. Res. 41(3–4):326–331.
  • Oakley RH, Cidlowski JA. 2011. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids . J Biol Chem. 286(5):3177–3184.
  • Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM. 2019. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol Med. 49(12):1958–1970.
  • Pariante CM, Lightman SL. 2008. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 31(9):464–468.
  • Pariante CM. 2017. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur Neuropsychopharmacol. 27(6):554–559.
  • Peng H, Long Y, Li J, Guo Y, Wu H, Yang Y, et al. 2014. Hypothalamic-pituitary-adrenal axis functioning and dysfunctional attitude in depressed patients with and without childhood neglect. BMC Psychiatry. 14:1–7.
  • Peixoto C, Grande AJ, Mallmann MB, Nardi AE, Cardoso A, Veras AB. 2018. Dehydroepiandrosterone (DHEA) for depression: a systematic review and meta-analysis. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 17:706–711.
  • Qin D, Rizak J, Feng X, Yang S, Lü L, Pan L, et al. 2016. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour. Sci. Rep. 6:1–9.
  • Rainer Q, Xia L, Guilloux J-P, Gabriel C, Mocaër E, Hen R, Enhamre E, Gardier AM, David DJ. 2012. Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int J Neuropsychopharm. 15(03):321–335.
  • Reul JMHM, de Kloet ER. 1985. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 117(6):2505–2511.
  • Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo J. 2015. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 300:141–154.
  • Rosenblat JD, McIntyre RS. 2018. Efficacy and tolerability of minocycline for depression: A systematic review and meta-analysis of clinical trials. J Affect Disord. 227:219–225.
  • Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M. 2010. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov. 9(12):971–988.
  • Saleh A, Potter GG, Mcquoid DR, Boyd B, Turner R, Macfall JR, et al. 2017. Effects of early life stress on depression, cognitive performance, and brain morphology. Psychol Med. 1:171–181.
  • Salim S. 2017. Oxidative Stress and the Central Nervous System. J Pharmacol Exp Ther. 360(1):201–205.
  • Sandhu JK, Kulka M. 2021. Decoding mast cell-microglia communication in neurodegenerative diseases. IJMS. 22(3):1093.
  • Schiepers OJG, Wichers MC, Maes M. 2005. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry. 29(2):201–217.
  • Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann JJ, Smiley J, Dwork AJ. 2014. Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol. 73(9):880–890.
  • Setiawan E, Attwells S, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Xu C, Sharma S, Kish S, Houle S, et al. 2018. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study. Lancet Psychiatry. 5(4):339–347.
  • Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, Suridjan I, Kennedy JL, Rekkas PV, Houle S, et al. 2015. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 72(3):268–275.
  • Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim K-W, Klein E, Kalchenko V, Bendel P, et al. 2013. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity. 38(3):555–569.
  • Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K. 2008. Steroid hormone receptor expression and function in microglia. Glia. 56(6):659–674.
  • Singhal G, Baune BT. 2017. Microglia: an interface between the loss of neuroplasticity and depression. Front Cell Neurosci. 11:1–16.
  • Soczynska JK, Mansur RB, Brietzke E, Swardfager W, Kennedy SH, Woldeyohannes HO, Powell AM, Manierka MS, McIntyre RS. 2012. Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res. 235(2):302–317.
  • Song C, Halbreich U, Han C, Leonard BE, Luo H. 2009. Imbalance between pro- and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electroacupuncture or fluoxetine treatment. Pharmacopsychiatry. 42(5):182–188.
  • Soria V, González-Rodríguez A, Huerta-Ramos E, Usall J, Cobo J, Bioque M, Barbero JD, García-Rizo C, Tost M, Monreal JA, et al. 2018. Targeting hypothalamic-pituitary-adrenal axis hormones and sex steroids for improving cognition in major mood disorders and schizophrenia: a systematic review and narrative synthesis. Psychoneuroendocrinology. 93:8–19.
  • Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. 2009. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron. 64(1):33–39.
  • Sorrells SF, Sapolsky RM. 2007. An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun. 21(3):259–272.
  • Spencer RL, Deak T. 2017. A users guide to HPA axis research. Physiol Behav. 178:43–65.
  • Srikumar BN, Paschapur M, Kalidindi N, Adepu B, Das ML, Sreedhara MV, Kuchibhotla VK, Pieschl RL, Li Y-W, Ega DSP, et al. 2017. Characterization of the adrenocorticotrophic hormone - induced mouse model of resistance to antidepressant drug treatment. Pharmacol Biochem Behav. 161:53–61.
  • Stárka L, Duskova M, Hill M. 2015. Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Mol Biol. 145:254–260.
  • Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein H-G, Bogerts B. 2008. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 42(2):151–157.
  • Stence N, Waite M, Dailey ME. 2001. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia. 33(3):256–266.
  • Stetler C, Miller GE. 2011. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med. 73(2):114–126.
  • Stratoulias V, Venero JL, Tremblay M-È, Joseph B. 2019. Microglial subtypes: diversity within the microglial community. Embo J. 38(17):1–18.
  • Streit WJ, Walter SA, Pennell NA. 1999. Reactive microgliosis. Prog Neurobiol. 57(6):563–581.
  • Su F, Yi H, Xu L, Zhang Z. 2015. Fluoxetine and S-citalopram inhibit M1 activation and promote M2 activation of microglia in vitro. Neuroscience. 294:60–68.
  • Subhramanyam CS, Wang C, Hu Q, Dheen ST. 2019. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 94:112–120.
  • Sugama S, Takenouchi T, Fujita M, Conti B, Hashimoto M. 2009. Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol. 207(1–2):24–31.
  • Sugama S, Takenouchi T, Fujita M, Kitani H, Conti B, Hashimoto M. 2013. Corticosteroids limit microglial activation occuring during acute stress. Neuroscience. 232:13–20.
  • Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, et al. 2011. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry. 16(12):1177–1188.
  • Suzuki H, Ohgidani M, Kuwano N, Chrétien F, Lorin de la Grandmaison G, Onaya M, Tominaga I, Setoyama D, Kang D, Mimura M, et al. 2019. Suicide and microglia: recent findings and future perspectives based on human studies. Front Cell Neurosci. 13:1–10.
  • Suzumura A. 2013. Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci. 14(1):16–20.
  • Tapp ZM, Godbout JP, Kokiko-Cochran ON. 2019. A tilted axis: maladaptive inflammation and HPA axis dysfunction contribute to consequences of TBI. Front Neurol. 10:1–19.
  • Thameem Dheen S, Kaur C, Ling E-A. 2007. Microglial activation and its implications in the brain diseases. Curr Med Chem. 14(11):1189–1197.
  • Theoharides TC, Tsilioni I, Bawazeer M. 2019. Mast cells, neuroinflammation and pain in fibromyalgia syndrome. Front Cell Neurosci. 13:1–8.
  • Thurgur H, Pinteaux E. 2019. Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience. 405:55–67.
  • Timmermans S, Souffriau J, Libert C. 2019. A General introduction to glucocorticoid biology. Front Immunol. 10:1545.
  • Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. 2014. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 42:50–59.
  • Tracey KJ. 2009. Reflex control of immunity. Nat Rev Immunol. 9(6):418–428.
  • Tremblay MÈ, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. 2011. The role of microglia in the healthy brain. J Neurosci. 31(45):16064–16069.
  • Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, Day TA, Walker FR. 2010. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun. 24(7):1058–1068.
  • Valvassori SS, Budni J, Varela RB, Quevedo J. 2013. Contributions of animal models to the study of mood disorders. Rev Bras Psiquiatr. 35(suppl 2):S121–S131.
  • van Bodegom M, Homberg JR, Henckens MJAG. 2017. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front Cell Neurosci. 11:1–33.
  • van der Meer MJM, Sweep CGJ, Rijnkels CEM, Pesman GJ, Tilders FJH, Kloppenborg PWC, Hermus ARMM. 1996. Acute stimulation of the hypothalamic-pituitary-adrenal axis by IL-1B, TNFa and IL-6: A dose response study. J Endocrinol Invest. 19(3):175–182.
  • Verdonk F, Petit A-C, Abdel-Ahad P, Vinckier F, Jouvion G, de Maricourt P, De Medeiros GF, Danckaert A, Van Steenwinckel J, Blatzer M, et al. 2019. Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine. Brain Behav Immun. 81:361–373.
  • Villas Boas GR, Boerngen de Lacerda R, Paes MM, Gubert P, Almeida WLDC, Rescia VC, de Carvalho PMG, de Carvalho AAV, Oesterreich SA. 2019. Molecular aspects of depression: a review from neurobiology to treatment. Eur J Pharmacol. 851:99–121.
  • Wang Y, Han Q, Gong W, Pan D, Wang L, Hu W, et al. 2018. Microglial activation mediates chronic mild behavior in adult rats. J Neuroinflammation. 15:1–14.
  • Werneburg S, Feinberg PA, Johnson KM, Schafer DP. 2017. A microglia-cytokine axis to modulate synaptic connectivity and function. Curr Opin Neurobiol. 47:138–145.
  • West PK, Viengkhou B, Campbell IL, Hofer MJ. 2019. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia. 67:1–21.
  • Wohleb ES. 2016. Neuron – microglia interactions in mental health disorders: “for better, and for worse”. Front Immunol. 7:1–13.
  • World Health Organization [WHO]. 2012. Depression and suicide. Available from: https://www.who.int/gho/publications/mdgs-sdgs/MDGs-SDGs2015_chapter7_snapshot_depression_suicide.pdf.
  • World Health Organization [WHO]. 2018. Depression – fact sheets. Available from: https://www.who.int/news-room/fact-sheets/detail/depression.
  • Xie Y, Zhou G, Wang C, Xu X, Li C. 2019. Specific microbiota dynamically regulate the bidirectional Gut-Brain Axis Communications in Mice Fed Meat Protein Diets. J Agric Food Chem. 67(3):1003–1017.
  • Yiallouris A, Tsioutis C, Agapidaki E, Zafeiri M, Agouridis AP, Ntourakis D, Johnson EO. 2019. Adrenal aging and its implications on stress responsiveness in humans. Front Endocrinol. 10:1–12.
  • Yirmiya R, Rimmerman N, Reshef R. 2015. Depression as a microglial disease. Trends Neurosci. 38(10):637–658.
  • Zhang C, Zhang Y-P, Li Y-Y, Liu B-P, Wang H-Y, Li K-W, Zhao S, Song C. 2019. Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat. Behav Brain Res. 356:348–357.
  • Zhang J, Li X, Ren Y, Zhao Y, Xing A, Jiang C, Chen Y, An L. 2018. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci. 12:1–13.
  • Zhang S, Zeng X, Yang H, Hu G, He S. 2012. Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol Biochem. 29(5–6):931–940.
  • Zhang Y, Su WJ, Chen Y, Wu TY, Gong H, Shen XL. 2016. Effects of hydrogen-rich water on depressive-like behavior in mice. Sci. Rep. 6:1–7.
  • Zhang Y-P, Wang H-Y, Zhang C, Liu B-P, Peng Z-L, Li Y-Y, Liu F-M, Song C. 2018. Mifepristone attenuates depression-like changes induced by chronic central administration of interleukin-1β in ats. Behav. Brain Res. 347:436–445.
  • Zhao Q, Wu X, Yan S, Xie X, Fan Y, Zhang J, et al. 2016. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPAR γ -mediated alteration of microglial activation phenotypes. J. Neuroinflammation. 13:1–17.
  • Zhao Y, Wang Q, Jia M, Fu S, Pan J, Chu C, Liu X, Liu X, Liu Z. 2019. (+) Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. J Nutr Biochem. 64:61–71.
  • Zheng X, Cheng Y, Chen Y, Yue Y, Li Yingchun, Xia S, et al. 2019. Ferulic acid improves depressive-like behavior in prenatally-stressed offspring rats via anti-inflammatory activity and HPA axis. Int J Mol Sci. 20:1–17.
  • Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. 2016. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 21:1–11.
  • Zobel AW, Nickel T, Künzel HE, Ackl N, Sonntag A, Ising M, Holsboer F. 2000. Efects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res. 34(3):171–181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.