823
Views
8
CrossRef citations to date
0
Altmetric
Articles

Efficient estimation and optimization of building costs using machine learning

, &

References

  • Afonso B, Melo L, Oliveira W, Sousa S, Berton L. 2019. Housing prices prediction with a deep learning and random forest ensemble. In Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional. SBC; p. 389–400.
  • Aldous D. 1993. The continuum random tree 2I. Ann Probab. 167:248–289.
  • Bhagat N, Mohokar A, Mane S. 2016. House price forecasting using data mining. IJCA. 152(2):23–26.
  • Čeh M, Kilibarda M, Lisec A, Bajat B. 2018. Estimating the performance of random forest versus multiple regression for predicting prices of the apartments. IJGI. 7(5):168.
  • Chen JH, Ong CF, Zheng L, Hsu SC. 2017. Forecasting spatial dynamics of the housing market using support vector machine. Int J Strategic Prop Manag. 21(3):273–283.
  • Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H. 2015. Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4).
  • Friedman JH. 2002. Stochastic gradient boosting. Comput Stat Data Anal. 38(4):367–378.
  • Gao G, Bao Z, Cao J, Qin AK, Sellis T, Wu Z. 2019. Location-centered house price prediction: a multi-task learning approach. arXiv preprint arXiv:1901.01774.
  • García de Soto B, Agustí-Juan I, Joss S, Hunhevicz J. 2019. Implications of construction 4.0 to the workforce and organizational structures. Int J Constr Manag. 1–13. DOI: 10.1080/15623599.2019.1616414
  • Ghosalkar NN, Dhage SN. 2018. Real estate value prediction using linear regression. In 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). IEEE; p. 1–5.
  • Goldberg DE. 2006. Genetic algorithms. USA: Springer.
  • Gulli A, Pal S. 2017. Deep learning with Keras. Birmingham, England: Packt Publishing Ltd.
  • Hoerl AE, Kennard RW. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics. 12(1):55–67.
  • Hong J, Choi H, Kim WS. 2020. A house price valuation based on the random forest approach: the mass appraisal of residential property in South Korea. Int J Strategic Prop Manag. 24(3):140–152.
  • Huang CH, Hsieh SH. 2020. Predicting BIM labor cost with random forest and simple linear regression. Autom Constr. 118:103280.
  • Hunter JD. 2007. Matplotlib: A 2D graphics environment. IEEE Ann Hist Comput. 9(03):90–95.
  • Jain AK, Mao J, Mohiuddin KM. 1996. Artificial neural networks: A tutorial. Computer. 29(3):31–44.
  • Jones E, Oliphant T, Peterson P. 2001. SciPy: Open source scientific tools for Python.
  • Jui JJ, Molla MI, Bari BS, Rashid M, Hasan MJ. 2020. Flat price prediction using linear and random forest regression based on machine learning techniques. In Embracing Industry 4.0. Singapore: Springer; p. 205–217.
  • Keller JM, Gray MR, Givens JA. 1985. A fuzzy k-nearest neighbor algorithm. IEEE Trans Syst, Man Cybern. SMC-15(4):580–585.
  • Kim GH, An SH, Kang KI. 2004. Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning. Build Environ. 39(10):1235–1242.
  • Kim GH, Shin JM, Kim S, Shin Y. 2013. Comparison of school building construction costs estimation methods using regression analysis, neural network, and support vector machine. JBCPR. 01(01):1–7.
  • Kim GH, Yoon JE, An SH, Cho HH, Kang KI. 2004. Neural network model incorporating a genetic algorithm in estimating construction costs. Build Environ. 39(11):1333–1340.
  • Kingma DP, Ba J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  • Kravanja S, Žula T. 2010. Cost optimization of industrial steel building structures. Adv Eng Softw. 41(3):442–450.
  • Le T, Hassan F, Le C, Jeong HD. 2019. Understanding dynamic data interaction between civil integrated management technologies: a review of use cases and enabling techniques. Int J Constr Manag. 1–22. DOI: 10.1080/15623599.2019.1678863.
  • Lešić V, Martinčević A, Vašak M. 2017. Modular energy cost optimization for buildings with integrated microgrid. Appl Energy. 197:14–28.
  • Li Y, Yuan Y. 2017. Convergence analysis of two-layer neural networks with relu activation. In Advances in neural information processing systems; p. 597–607.
  • Limsombunchai V. 2004. House price prediction: hedonic price model vs. artificial neural network. In New Zealand agricultural and resource economics society conference; p. 25–26.
  • Lowe DJ, Emsley MW, Harding A. 2006. Predicting construction cost using multiple regression techniques. J Constr Eng Manage. 132(7):750–758.
  • Madhuri CR, Anuradha G, Pujitha MV. 2019, March. House price prediction using regression techniques: A comparative study. In 2019 IEEE International Conference on Smart Structures and Systems (ICSSS); p. 1–5.
  • Maier O, Wilms M, von der Gablentz J, Krämer UM, Münte TF, Handels H. 2015. Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods. 240:89–100.
  • Matel E, Vahdatikhaki F, Hosseinyalamdary S, Evers T, Voordijk H. 2019. An artificial neural network approach for cost estimation of engineering services. Int J Constr Manag. 1–14. DOI: 10.1080/15623599.2019.1692400
  • McKinney W. 2011. pandas: a foundational Python library for data analysis and statistics. Python High Performance Scientific Comput. 14(9):1–9.
  • Park B, Bae JK. 2015. Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert Syst Appl. 42(6):2928–2934.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, … Duchesnay E. 2011. Scikit-learn: Machine learning in Python. J Machine Learn Res. 12:2825–2830.
  • Peng Z, Huang Q, Han Y. 2019. Model research on forecast of second-hand house price in chengdu based on xgboost algorithm. In 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT). IEEE; p. 168–172.
  • Phan TD. 2018. Housing price prediction using machine learning algorithms: The case of Melbourne city, Australia. In 2018 International Conference on Machine Learning and Data Engineering (iCMLDE). IEEE; p. 35–42.
  • Rardin RL, Rardin RL. 1998. Optimization in operations research (Vol. 166). Upper Saddle River, NJ: Prentice Hall.
  • Risbeck MJ, Maravelias CT, Rawlings JB, Turney RD. 2015. Cost optimization of combined building heating/cooling equipment via mixed-integer linear programming. In 2015 American Control Conference (ACC). IEEE; p. 1689–1694.
  • Roe BP, Yang HJ, Zhu J, Liu Y, Stancu I, McGregor G. 2005. Boosted decision trees as an alternative to artificial neural networks for particle identification. Nucl Instrum Methods Phys Res, Sect A. 543(2-3):577–584.
  • Safavian SR, Landgrebe D. 1991. A survey of decision tree classifier methodology. IEEE Trans Syst, Man, Cybern. 21(3):660–674.
  • Sanni-Anibire MO, Zin RM, Olatunji SO. 2020. Machine learning model for delay risk assessment in tall building projects. Int J Constr Manag. 1–10. DOI: 10.1080/15623599.2020.1768326.
  • Seber GA., Lee AJ. 2012. Linear regression analysis. Vol. 329. New Jersey, USA: John Wiley & Sons.
  • Sha'ar KZ, Assaf SA, Bambang T, Babsail M, Fattah AAE. 2017. Design–construction interface problems in large building construction projects. Int J Constr Manag. 17(3):238–250.
  • Suykens JA, Vandewalle J. 1999. Least squares support vector machine classifiers. Neural Process Lett. 9(3):293–300.
  • Tepeli E, Taillandier F, Breysse D. 2019. Multidimensional modelling of complex and strategic construction projects for a more effective risk management. Int J Constr Manag. 1–22. DOI: 10.1080/15623599.2019.1606493.
  • Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J Stat Soc Ser B Methodol. 58(1):267–288.
  • Truong Q, Nguyen M, Dang H, Mei B. 2020. Housing Price Prediction via Improved Machine Learning Techniques. Procedia Comput Sci. 174:433–442.
  • Van Der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy array: a structure for efficient numerical computation. Comput Sci Eng. 13(2):22–30.
  • Wold S, Esbensen K, Geladi P. 1987. Principal component analysis. Chemometrics Intell Lab Syst. 2(1-3):37–52.
  • Zou H, Hastie T. 2005. Regression shrinkage and selection via the elastic net, with applications to microarrays. J Royal Statistical Soc B. 67(2):301–320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.