88
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

ANN-based estimation model for the preconstruction cost of pavement rehabilitation projects

, , &
Pages 894-901 | Received 15 Feb 2023, Accepted 16 Jun 2023, Published online: 01 Aug 2023

References

  • Adel K, Elyamany A, Belal A, Kotb A. 2016. Developing parametric model for conceptual cost estimate of highway projects. Int J Eng Sci. 6(7):1728–1734.
  • American Society of Civil Engineers [ASCE]. 2022. Report card for America’s infrastructure. [accessed Jun 2022]. http://www.asce.org.
  • Amin M, Iqtidar A, Khan K, Javed M, Shalabi F, Qadir M. 2021. Comparison of machine learning approaches with traditional methods for predicting the compressive strength of rice husk ash concrete. Crystals. 11(7):779. doi: 10.3390/cryst11070779.
  • Antoniou F, Konstantinidis D, Aretoulis G, Xenidis Y. 2018. Preliminary construction cost estimates for motorway underpass bridges. Int J Constr Manage. 18(4):321–330. doi: 10.1080/15623599.2017.1358076.
  • Asmar M, Hanna A, Whited G. 2011. New approach to developing conceptual cost estimates for highway projects. J Constr Eng Manage. 137(11):942–949. doi: 10.1061/(ASCE)CO.1943-7862.0000355.
  • Balazs G. 2009. Cascade-correlation neural networks: a survey. University of Alberta. Technical Report.
  • Barakchi M, Torp O, Belay A. 2017. Cost estimation methods for transport infrastructure: a systematic literature review. Procedia Eng. 196:270–277. doi: 10.1016/j.proeng.2017.07.199.
  • Blampied N. 2018. Parametric functions for conceptual and feasibility estimating in public highway project portfolios [Ph.D. dissertation]. UC Berkeley.
  • Cheng M, Tsai H, Hsieh W. 2009. Web-based conceptual cost estimates for construction projects using Evolutionary Fuzzy Neural Inference Model. Autom Constr. 18(2):164–172. doi: 10.1016/j.autcon.2008.07.001.
  • Cheng M, Tsai H, Sudjono E. 2010. Conceptual cost estimates using evolutionary fuzzy hybrid neural network for projects in construction industry. Expert Syst Appl. 37(6):4224–4231. doi: 10.1016/j.eswa.2009.11.080.
  • Cho H, Kim K, Kim J, Kim G. 2013. A comparison of construction cost estimation using multiple regression analysis and neural network in elementary school project. J Korea Inst Build Constr. 13(1):66–74. doi: 10.5345/JKIBC.2013.13.1.066.
  • Choi K, Kim YH, Bae Y, Lee H. 2016. Determining future maintenance cost of low-volume highway rehabilitation projects for incorporation into life-cycle cost analysis. J Comput Civil Eng. 30(4):04015055.
  • Choi S, Kim DY, Han SH, Kwak YH. 2014. Conceptual cost-prediction model for public road planning via rough set theory and case-based reasoning. J Constr Eng Manage. 140(1):04013026.
  • Chou J. 2009. Web-based CBR system applied to early cost budgeting for pavement maintenance projects. Expert Syst Appl. 36(2):2947–2960. doi: 10.1016/j.eswa.2008.01.025.
  • Cirilovic J, Vajdic N, Mladenovic G, Queiroz C. 2014. Developing cost estimation models for road rehabilitation and reconstruction: case study of projects in Europe and Central Asia. J Constr Eng Manage. 140(3):04013065.
  • Ciurana J, Quintana G, Garcia-Romeu M. 2008. Estimating the cost of vertical high-speed machining centres, a comparison between multiple regression analysis and the neural networks approach. Int J Prod Econ. 115(1):171–178. doi: 10.1016/j.ijpe.2008.05.009.
  • Craigie E, Gransberg D, Jeong H. 2016. Cost and scope breakdown structure for functional level estimating of consultant fees. Transp Res Record. 2573(1):157–163. doi: 10.3141/2573-19.
  • Del Puerto C, Agosto L, Gransberg D. 2016. A case for incorporating pre-construction cost estimating in construction engineering and management programs. ASCE annual conference and exposition; p. 126–132.
  • Dhole V, Patil N. 2014. A review of cascade correlation neural network for software cost estimation. International Journal of Computer Applications (0975–8887). National conference on emerging trends in information technology (NCETIT-2014).
  • El-Kholy A. 2021. Exploring the best ANN model based on four paradigms to predict delay and cost overrun percentages of highway projects. Int J Constr Manage. 21(7):694–712. doi: 10.1080/15623599.2019.1580001.
  • El-Kholy A, Tahwia A, Elsayed M. 2022. Prediction of simulated cost contingency for steel reinforcement in building projects: ANN versus regression-based models. Int J Constr Manage. 22(9):1675–1689. doi: 10.1080/15623599.2020.1741492.
  • Golizadeh H, Banihashemi S, Sadeghifam A, Preece C. 2017. Automated estimation of completion time for dam projects. Int J Constr Manage. 17(3):197–209. doi: 10.1080/15623599.2016.1192249.
  • Goodarzizad P, Golafshani E, Arashpour M. 2021. Predicting the construction labour productivity using artificial neural network and grasshopper optimization algorithm. Int J Constr Manage. 21(5):1–17.
  • Gransberg D, Jeong H, Craigie E, Rueda-Benavides J, Shrestha K. 2016. Estimating highway preconstruction service costs – Volume 1: guidebook. National Cooperative Highway Research Program (NCHRP). Report 826.
  • Hyari K, Al-Daraiseh A, El-Mashaleh M. 2016. Conceptual cost estimation model for engineering services in public construction projects. J Manage Eng. 32(1):04015021.
  • Kim G, An S, Kang K. 2004. Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning. Build Environ. 39(10):1235–1242. doi: 10.1016/j.buildenv.2004.02.013.
  • Kim G, Shin J, Kim S, Shin Y. 2013. Comparison of school building construction costs estimation methods using regression analysis, neural network, and support vector machine. JBCPR. 01(01):1–7. doi: 10.4236/jbcpr.2013.11001.
  • Jaafari A, Pazhouhan I, Bettinger P. 2021. Machine learning modeling of forest road construction cost. Forests. 12(9):1169. doi: 10.3390/f12091169.
  • Li C, Ding L, Zhong B. 2019. Highway planning and design in the Qinghai–Tibet Plateau of China: a cost–safety balance perspective. Engineering. 5(2):337–349. doi: 10.1016/j.eng.2018.12.008.
  • Liu M, Rasdorf W, Hummer J, Hollar D, Parikh S. 2012. Predicting the preliminary engineering duration of bridge projects. Constr Res Congr. 1:505–514. doi: 10.1061/9780784412329.051.
  • Liu M, Rasdorf W, Hummer J, Hollar D, Parikh S. 2013. Preliminary engineering cost-estimation strategy assessment for roadway projects. J Manage Eng. 29(2):150–157. doi: 10.1061/(ASCE)ME.1943-5479.0000137.
  • Markiz N, Jrade A. 2022. Integrating an expert system with BrIMS, cost estimation, and linear scheduling at conceptual design stage of bridge projects. Int J Constr Manage. 22(5):913–928. doi: 10.1080/15623599.2019.1661572.
  • Matel E, Vahdatikhaki F, Hosseinyalamdary F, Evers T, Voordijk H. 2022. An artificial neural network approach for cost estimation of engineering services. Int J Constr Manage. 22(7):1274–1287. doi: 10.1080/15623599.2019.1692400.
  • Mesbahi M, Rahmani A, Hosseinzadeh M. 2017. Highly reliable architecture using 80/20 rule in cloud computing datacenters. Future Gener Comput Syst. 77:77–86. doi: 10.1016/j.future.2017.06.011.
  • Mohamed B, Moselhi O. 2022. Conceptual estimating of construction duration and cost of public highway projects. ITcon. 27:595–618. doi: 10.36680/j.itcon.2022.029.
  • Mohamed S, Mohamed M, Farghally M. 2021. A new cascade-correlation growing deep learning neural network algorithm. Algorithms. 14(5):158. doi: 10.3390/a14050158.
  • Nachev A, Hogan M, Stoyanov B. 2012. Cascade-correlation neural networks for breast cancer diagnosis. ICAI’11: The 11th international conference on artificial intelligence, Las Vegas, USA, July 18–21; p. 475–480.
  • Persad K, O’Connor J, Varghese K. 1995. Forecasting engineering manpower requirements for highway preconstruction activities. J Manage Eng. 11(3):41–47.
  • Roxas C, Roxas N, Cristobal J, Hao S, Rabino R. 2019. Modeling road construction project cost in the Philippines using the artificial neural network approach. IEEE 11th international conference on humanoid nanotechnology, information technology, communication and control, environment, and management (HNICEM), Nov 29, 2019; p. 1–5.
  • Sahoo S, Jha M. 2013. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. Hydrol J. 21(8):1865–1887.
  • Shehab T. 2009. Cost impact factors for utility replacement and repair projects. Cost Eng (AACE). 51(1):22–29.
  • Shehab T, Farooq M. 2013. Neural network cost estimating model for utility rehabilitation projects. J Eng Constr Architect Manag. 20(2):118–126. doi: 10.1108/09699981311302991.
  • Shehab T, Farooq M, Sandhu S, Nguyen T, Nasr E. 2010. Cost estimating models for utility rehabilitation projects: neural networks versus regression. J Pipeline Syst Eng Pract. 1(3):104–110. doi: 10.1061/(ASCE)PS.1949-1204.0000058.
  • Shehab T, Nasr E, Farooq M. 2014. Conceptual cost-estimating model for water and sewer projects. Pipelines 2014: from underground to the forefront of innovation and sustainability, Portland, Oregon; p. 367–373. doi: 10.1061/9780784413692.033.
  • Shehab T, Meisami-Fard I. 2013. Cost-estimating model for rubberized asphalt pavement rehabilitation projects. J Infrastruct Syst. 19(4):496–502. doi: 10.1061/(ASCE)IS.1943-555X.0000146.
  • Shrestha P, Mani N. 2014. Impact of design cost on project performance of design-bid-build road projects. J Manage Eng. 30(3):04014007. doi: 10.1061/(ASCE)ME.1943-5479.0000220.
  • Tanabe K. 2018. Pareto’s 80/20 rule and the Gaussian distribution. Physica A. 510:635–640. doi: 10.1016/j.physa.2018.07.023.
  • Topalović D, Davidović M, Jovanović M, Bartonova A, Ristovski Z, Jovašević-Stojanović M. 2019. In search of an optimal in-field calibration method of low-cost gas sensors for ambient air pollutants: comparison of linear, multilinear and artificial neural network approaches. Atmos Environ. 213:640–658. doi: 10.1016/j.atmosenv.2019.06.028.
  • Vahdani B, Mousavi S, Mousakhani M, Sharifi M, Hashemi H. 2011. A neural network model based on support vector machine for conceptual cost estimation in construction projects. J Optim Ind Eng. 5(10):11–18.
  • Volovski M, Murillo-Hoyos J, Saeed T, Labi S. 2017. Estimation of routine maintenance expenditures for highway pavement segments: accounting for heterogeneity using random-effects models. J Transp Eng A Syst. 143(5):04017006.
  • Wang W, Bilozerov T, Dzeng R, Hsiao F, Wang K. 2017. Conceptual cost estimations using neuro-fuzzy and multi-factor evaluation methods for building projects. J Constr Eng Manage. 23(1):1–14.
  • Wang Y, Elhag T. 2007. A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks. Expert Syst Appl. 32(2):336–348. doi: 10.1016/j.eswa.2005.11.029.
  • Ward Systems Group. 2022. NeuroShell predictor reference manual. Fredrick (MD): Ward Systems Group.
  • Yu WD, Skibniewski M. 2010. Integrating neurofuzzy system with conceptual cost estimation to discover cost-related knowledge from residential construction projects. J Comput Civ Eng. 24(1):35–44. doi: 10.1061/(ASCE)0887-3801(2010)24:1(35).
  • Zhang Y, Minchin E, Agdas D. 2017. Forecasting completed cost of highway projects using LASSO regularized regression. J Constr Eng Manage. 143(10):04017071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.