555
Views
8
CrossRef citations to date
0
Altmetric
Articles

Synthesis of 2-{5-[4-((4-nitrophenyl)diazenyl)phenyl]-1,3,4-oxadiazol-2-ylthio}ethyl acrylate monomer and its application in a dual pH and temperature responsive soluble polymeric sensor

&
Pages 460-469 | Received 08 Dec 2014, Accepted 03 Feb 2015, Published online: 06 May 2015

References

  • Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M, Willner I. Catalytic beacons for the detection of DNA and telomerase activity. J. Am. Chem. Soc. 2004;126:7430–7431.10.1021/ja031875r
  • Xu W, Xue XJ, Li TH, Zeng HQ, Liu XG. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew. Chem. Int. Ed. 2009;48:6849–6852.10.1002/anie.v48:37
  • Aoshima S, Kanaoka S. Synthesis of stimuli-responsive polymers by living polymerization: poly(N-isopropylacrylamide) and poly(vinyl ether)s. Adv. Polym. Sci. 2008;210:169–208.
  • Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci. 2004;29:1173–1222.10.1016/j.progpolymsci.2004.08.003
  • Zhang L, Guo R, Yang M, Jiang X., Liu B. Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv. Mater. 2007;19:2988–2992.10.1002/(ISSN)1521-4095
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Delivery Rev. 2006;58:1655–1670.10.1016/j.addr.2006.09.020
  • Heffernan MJ, Murthy N. Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle. Bioconjugate Chem. 2005;16:1340–1342.10.1021/bc050176w
  • Zhang C, Suslick KS. A colorimetric sensor array for organics in water. J. Am. Chem. Soc. 2005;127:11548–11549.10.1021/ja052606z
  • Edwards EW, Chanana M, Wang D, Möhwald H. Stimuli-responsive reversible transport of nanoparticles across water/oil interfaces. Angew. Chem. Int. Ed. 2008;47:320–323.10.1002/(ISSN)1521-3773
  • Shiraishi Y, Miyamoto R, Hirai T. A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer. Langmuir. 2008;24:4273–4279.10.1021/la703890n
  • Guo ZQ, Zhu WH, Xiong YY, Tian H. Multiple logic fluorescent thermometer system based on N-isopropylmethacrylamide copolymer bearing dicyanomethylene-4H-pyran moiety. Macromolecules. 2009;42:1448–1453.10.1021/ma802660e
  • Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 2009;131:2766–2767.10.1021/ja807714j
  • Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004;22:969–976.10.1038/nbt994
  • Koopmans C, Ritter H. Color change of N-isopropylacrylamide copolymer bearing Reichardts dye as optical sensor for lower critical solution temperature and for host–guest interaction with β-cyclodextrin. J. Am. Chem. Soc. 2007;129:3502–3503.10.1021/ja068959v
  • Roth I, Jbarah AA, Holze R, Friedrich M, Spange S. 2-nitro-1,4-diaminobenzene-functionalized poly(vinyl amine)s as water-soluble UV–vis-sensitive pH sensors. Macromol. Rapid Commun. 2006;27:193–199.10.1002/(ISSN)1521-3927
  • Hasegawa T, Kondo Y, Koizumi Y, Sugiyama T, Takeda A, Ito S, Hamada F. A highly sensitive probe detecting low pH area of HeLa cells based on rhodamine B modified β-cyclodextrins. Bioorg. Med. Chem. 2009;17:6015–6019.10.1016/j.bmc.2009.06.046
  • Borisov SM, Wolfbeis OS. Temperature-sensitive europium(III) probes and their use for simultaneous luminescent sensing of temperature and oxygen. Anal. Chem. 2006;78:5094–5101.10.1021/ac060311d
  • Borisov SM, Vasylevska AS, Krause C, Wolfbeis OS. Composite luminescent material for dual sensing of oxygen and temperature. Adv. Funct. Mater. 2006;16:1536–1542.10.1002/(ISSN)1616-3028
  • Jorge PAS, Maule C, Silva AJ, Benrashid R, Santos JL, Farahi F. Dual sensing of oxygen and temperature using quantum dots and a ruthenium complex. Anal. Chim. Acta. 2008;606:223–229.10.1016/j.aca.2007.11.008
  • Borisov SM, Seifner R, Klimant I. A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature. Anal. Bioanal. Chem. 2011;400:2463–2474.10.1007/s00216-010-4617-4
  • Schroeder CR, Neurauter G, Klimant I. Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems. Microchim. Acta. 2007;158:205–218.10.1007/s00604-006-0696-5
  • Borchert NB, Ponomarev GV, Kerry JP, Papkovsky DB. O2/pH multisensor based on one phosphorescent dye. Anal. Chem. 2011;83:18–22.10.1021/ac1025754
  • Schneider K, Schütz V, John GT, Heinzle E. Optical device for parallel online measurement of dissolved oxygen and pH in shake flask cultures. Bioprocess Biosyst. Eng. 2010;33:541–547.10.1007/s00449-009-0367-0
  • Mistlberger G, Koren K, Borisov SM, Klimant I. Magnetically remote-controlled optical sensor spheres for monitoring oxygen or pH. Anal. Chem. 2010;82:2124–2128.10.1021/ac902393u
  • Kocincová AS, Nagl S, Arain S, Krause C, Borisov SM, Arnold M, Wolfbeis OS. Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol. Bioeng. 2008;100:430–438.10.1002/(ISSN)1097-0290
  • Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M. A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces. Adv. Funct. Mater. 2008;18:1399–1406.10.1002/adfm.v18:9
  • Stich MIJ, Schaeferling M, Wolfbeis OS. Multicolor fluorescent and permeation-selective microbeads enable simultaneous sensing of pH, oxygen, and temperature. Adv. Mater. 2009;21:2216–2220.10.1002/adma.v21:21
  • Wang D, Liu T, Yin J, Liu S. Stimuli-responsive fluorescent poly(N-isopropylacrylamide) microgels labeled with phenylboronic acid moieties as multifunctional ratiometric probes for glucose and temperatures. Macromolecules. 2011;44:2282–2290.10.1021/ma200053a
  • Pietsch C, Hoogenboom R, Schubert US. Soluble polymeric dual sensor for temperature and pH value. Angew. Chem. Int. Ed. 2009;48:5653–5656.10.1002/anie.v48:31
  • Li YY, Cheng H, Zhu JL, Yuan L, Dai Y, Cheng SX, Zhang XZ, Zhuo RX. Temperature- and pH-sensitive multicolored micellar complexes. Adv. Mater. 2009;21:2402–2406.10.1002/adma.v21:23
  • Uchiyama S, Kawai N, de Silva AP, Iwai K. Fluorescent polymeric and logic gate with temperature and pH as inputs. J. Am. Chem. Soc. 2004;126:3032–3033.10.1021/ja039697p
  • Cui K, Zhu D, Cui W, Lu X, Lu Q. Dual-responsive ionically assembled fluorescent nanoparticles from copoly(ionic liquid) for temperature sensor. J. Phys. Chem. C. 2012;116:6077–6082.10.1021/jp211847b
  • Tang B, Yu F, Li P, Tong LL, Duan X, Xie T, Wang X. A near-infrared neutral pH fluorescent probe for monitoring minor pH changes: imaging in living HepG2 and HL-7702 cells. J. Am. Chem. Soc. 2009;131:3016–3023.10.1021/ja809149g
  • Wan XJ, Wang D, Liu SY. Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. Langmuir. 2010;26:15574–15579.10.1021/la102148x
  • Galindo F, Burguete MI, Vigara L, Luis SV, Kabir N, Gavrilovic J, Russell DA. Synthetic macrocyclic peptidomimetics as tunable pH probes for the fluorescence imaging of acidic organelles in live cells. Angew. Chem. Int. Ed. 2005;44:6504–6508.10.1002/(ISSN)1521-3773
  • Pringsheim E, Zimin D, Wolfbeis OS. Fluorescent beads coated with polyaniline: A novel nanomaterial for optical sensing of pH. Adv. Mater. 2001;13:819–822.10.1002/1521-4095(200106)13:11<819::AID-ADMA819>3.0.CO;2-D
  • Yan Q, Yuan J, Kang Y, Cai Z, Zhou L, Yin Y. Dual-sensing porphyrin-containing copolymer nanosensor as full-spectrum colorimeter and ultra-sensitive thermometer. Chem. Commun. 2010;46:2781–2783.10.1039/b926882k
  • Pietsch C, Schubert US, Hoogenboom R. Aqueous polymeric sensors based on temperature-induced polymer phase transitions and solvatochromic dyes. Chem. Commun. 2011;47:8750–8765; and references cited therein.10.1039/c1cc11940k
  • Katsumoto Y, Tanaka T, Sato H, Ozaki Y. Conformational change of poly(N-isopropylacrylamide) during the coil–globule transition investigated by attenuated total reflection/infrared spectroscopy and density functional theory calculation. J. Phys. Chem. A. 2001;106:3429–3435.
  • Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 1992;17:163–249.10.1016/0079-6700(92)90023-R
  • Heskins M, Guillet JE, James E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Chem. 1968;2:1441–1455.10.1080/10601326808051910
  • Eftekhari-Sis B, Zirak M. Chemistry of α-oxoesters: A powerful tool for the synthesis of heterocycles. Chem. Rev. 2015;115:151–264.10.1021/cr5004216
  • Eftekhari-Sis B, Zirak M, Akbari A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev. 2013;113:2958–3043.10.1021/cr300176g
  • Eftekhari-Sis B, Akbari A, Amirabedi M. Synthesis of new N-alkyl(aryl)-2,4-diaryl-1H-pyrrol-3-ols via aldol Paal–Knorr reactions. Chem. Heterocycl. Comp. 2011;46:1330–1334.10.1007/s10593-011-0669-4
  • Khalili B, Jajarmi P, Eftekhari-Sis B, Hashemi MM. Novel one-pot, three-component synthesis of new 2-alkyl-5-aryl-(1H)-pyrrole-4-ol in water. J. Org. Chem. 2008;73:2090–2095.10.1021/jo702385n
  • Young RW, Wood KH. The cyclization of 3-acyldithiocarbazate esters. J. Am. Chem. Soc. 1955;77:400–403.10.1021/ja01607a051
  • Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR. Vogel’s textbook of practical organic chemistry. 5th ed. Harlow: Longman; 1989. p. 1269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.