1,309
Views
4
CrossRef citations to date
0
Altmetric
Articles

Syntheses and properties of amphiphilic poly (diethyl vinylphosphonate-co-2-chloroethyl methacrylate) copolymers

, &
Pages 470-478 | Received 14 Dec 2014, Accepted 30 Jan 2015, Published online: 07 May 2015

References

  • Parvole J, Jannasch P. Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state. Macromolecules. 2008;41:3893–3903.10.1021/ma800042m
  • Schuster M, Rager T, Noda A, Kreuer KD, Maier J. About the choice of the protogenic group in pem separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells. 2005;5:355–365.10.1002/(ISSN)1615-6854
  • Steininger H, Schuster M, Kreuer KD, Kaltbeitzel A, Bingol B, Meyer WH, Schauff S, Brunklaus G, Maier J, Spiess HW. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Phys. Chem. Chem. Phys. 2007;9:1764–1773.10.1039/b618686f
  • Souquet-Grumey J, Perrin R, Cellier J, Bigarre J, Buvat P. Synthesis and fuel cell performance of phosphonated hybrid membranes for PEMFC applications. J. Membr. Sci. 2014;466:200–210.10.1016/j.memsci.2014.04.006
  • Berber MR, Fujigaya T, Nakashima N. High-temperature polymer electrolyte fuel cell using poly(vinylphosphonic acid) as an electrolyte shows a remarkable durability. Chem. Cat. Chem. 2014;6:567–571.10.1002/cctc.v6.2
  • Berber MR, Fujigaya T, Sasaki K, Nakashima N. Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole. Sci. Rep. 2013;3:1764–1770.
  • Lee WL, Liu LC, Chen CM, Lin JS. Syntheses and flame retarding properties of DOPO polymers, melamine polymers, and DOPO-melamine copolymers. Polym. Adv. Technol. 2014;25:36–40.10.1002/pat.v25.1
  • Wang TL, Cho YL, Kuo PL. Flame-retarding materials. II. Synthesis and flame-retarding properties of phosphorus-on-pendent and phosphorus-on-skeleton polyols and the corresponding polyurethanes. J. Appl. Polym. Sci. 2001;82:343–357.10.1002/(ISSN)1097-4628
  • Ménard R, Negrell-Guirao C, Ferry L, Sonnier R, David G. Synthesis of new flame-retardants by radical chain transfer copolymerization of glycidyl methacrylate and dimethoxy-phosphorylmethyl methacrylate. Eur. Polym. J. 2014;57:109–120.10.1016/j.eurpolymj.2014.05.006
  • Carja ID, Serbezeanu D, Lisa G, Vlad-Bubulac T, Hamciuc C. Thermal degradation and kinetic studies of new flame-retardant phosphorus-containing polymers with liquid crystalline properties. Int. J. Polym. Anal. Charact. 2014;19:372–382.10.1080/1023666X.2014.902896
  • Monge S, Canniccioni B, Graillot A, Robin JJ. Phosphorus-containing polymers: a great opportunity for the biomedical field. Biomacromolecules. 2011;12:1973–1982.10.1021/bm2004803
  • Abueva CDG, Lee BT. Poly(vinylphosphonic acid) immobilized on chitosan: a glycosaminoglycan-inspired matrix for bone regeneration. Int. J. Biol. Macromol. 2014;64:294–301.10.1016/j.ijbiomac.2013.12.018
  • Westheimer FH. Why nature chose phosphates. Science. 1987;235:1173–1178.
  • Palmer CD, Ninković J, Prokopowicz ZM, Mancuso CJ, Marin A, Andrianov AK, Dowling DJ, Levy O. The effect of stable macromolecular complexes of ionic polyphosphazene on HIV Gag antigen and on activation of human dendritic cells and presentation to T-cells. Biomaterials. 2014;35:8876–8886.10.1016/j.biomaterials.2014.06.043
  • Ucan D, Kanik FE, Karatas Y, Toppare L. Synthesis and characterization of a novel polyphosphazene and its application to biosensor in combination with a conducting polymer. Sens. Actuators B. 2014;201:545–554.10.1016/j.snb.2014.05.040
  • Steinbach T, Alexandrino EM, Wahlen C, Landfester K, Wurm FR. Poly(phosphonate)s via Olefin Metathesis: adjusting hydrophobicity and morphology. Macromolecules. 2014;47:4884–4893.10.1021/ma5013286
  • David G, Negrell-Guirao C, Iftene F, Boutevin B, Chougrani K. Recent progress on phosphonate vinyl monomers and polymers therefore obtained by radical (co)polymerization. Polym. Chem. 2012;3:265–274.10.1039/C1PY00276G
  • Ford-Moore AH, Howarth Williams J. The reaction between trialkyl phosphites and alkyl halides. J. Chem. Soc. 1947;1465–1467.10.1039/jr9470001465
  • Kosolapoff GM. Isomerization of tri-alkyl phosphites. II. Reaction between triethyl phosphite and trimethylene bromide. J. Am. Chem. Soc. 1944;66:1511–1512.10.1021/ja01237a028
  • Kosolapoff GM. Isomerization of tri-alkyl phosphites. J. Am. Chem. Soc. 1944;66:109–111.10.1021/ja01229a031
  • Kosolapoff GM. Isomerization of alkyl phosphites. VII. Some derivatives of 2-bromoethane phosphonic acid. J. Am. Chem. Soc. 1948;70:1971–1972.10.1021/ja01185a512
  • Pike RM, Cohen RA. Organophosphorus polymers. I. Peroxide-initiated polymerization of diethyl and diisopropyl vinylphosphonate. J. Polym. Sci. 1960;44:531–538.10.1002/pol.1960.1204414424
  • Bingöl B, Hart-Smith G, Barner-Kowollik C, Wegner G. Characterization of oligo(vinyl phosphonate)s by high-resolution electrospray ionization mass spectrometry: implications for the mechanism of polymerization. Macromolecules. 2008;41:1634–1639.10.1021/ma702225k
  • Sato T, Hasegawa M, Seno M, Hirano T. Radical polymerization behavior of dimethyl vinylphosphonate: homopolymerization and copolymerization with trimethoxyvinylsilane. J. Appl. Polym. Sci. 2008;109:3746–3752.10.1002/app.v109:6
  • Kawauchi T, Ohara M, Udo M, Kawauchi M, Takeichi T. Preparation of isotactic-rich poly(dimethyl vinylphosphonate) and poly(vinylphosphonic acid) via the anionic polymerization of dimethyl vinylphosphonate. J. Polym. Sci. Polym. Chem. 2010;48:1677–1682.10.1002/pola.v48:8
  • Perrin R, Elomaa M, Jannasch P. Nanostructured proton conducting polystyrene−poly(vinylphosphonic acid) block copolymers prepared via sequential anionic polymerizations. Macromolecules. 2009;42:5146–5154.10.1021/ma900703j
  • Wagner T, Manhart A, Deniz N, Kaltbeitzel A, Wagner M, Brunklaus G, Meyer WH. Vinylphosphonic acid homo- and block copolymers. Macromol. Chem. Phys. 2009;210:1903–1914.10.1002/macp.v210:22
  • Li J, Ni XF, Ling J, Shen ZQ. Syntheses and properties of poly(diethyl vinylphosphonate) initiated by lanthanide tris(borohydride) complexes: polymerization controllability and mechanism. J. Polym. Sci. Polym. Chem. 2013;51:2409–2415.10.1002/pola.26626
  • Salzinger S, Rieger B. Rare earth metal-mediated group transfer polymerization of vinylphosphonates. Macromol. Rapid Commun. 2012;33:1327–1345.10.1002/marc.201200278
  • Salzinger S, Seemann UB, Plikhta A, Rieger B. Poly(vinylphosphonate)s synthesized by trivalent cyclopentadienyl lanthanide-induced group transfer polymerization. Macromolecules. 2011;44:5920–5927.10.1021/ma200752d
  • Salzinger S, Soller BS, Plikhta A, Seemann UB, Herdtweck E, Rieger B. Mechanistic studies on initiation and propagation of rare earth metal-mediated group transfer polymerization of vinylphosphonates. J. Am. Chem. Soc. 2013;135:13030–13040.10.1021/ja404457f
  • Zhang N, Salzinger S, Rieger B. Poly(vinylphosphonate)s with widely tunable LCST: a promising alternative to conventional thermoresponsive polymers. Macromolecules. 2012;45:9751–9758.10.1021/ma3019014
  • Zhang N, Salzinger S, Soller BS, Rieger B. Rare earth metal-mediated group-transfer polymerization: from defined polymer microstructures to high-precision nano-scaled objects. J. Am. Chem. Soc. 2013;135:8810–8813.10.1021/ja4036175
  • Yang JM, Liang YJ, Salzinger S, Zhang N, Dong DW, Rieger B. Poly(vinylphosphonate)s functionalized polymer microspheres via rare earth metal-mediated group transfer polymerization. J. Polym. Sci. Polym. Chem. 2014;52:2919–2925.10.1002/pola.27324
  • Rabe GW, Komber H, Häussler L, Kreger K, Lattermann G. Polymerization of diethyl vinylphosphonate mediated by rare-earth tris(amide) compounds. Macromolecules. 2010;43:1178–1181.10.1021/ma902068n
  • Seemann UB, Dengler JE, Rieger B. High-molecular-weight poly(vinylphosphonate)s by single-component living polymerization initiated by rare-earth-metal complexes. Angew. Chem. Int. Ed. 2010;49:3489–3491.10.1002/anie.201000804
  • Kehrle J, Hohlein IMD, Yang ZY, Jochem AR, Helbich T, Kraus T, Veinot JGC, Rieger B. Thermoresponsive and photoluminescent hybrid silicon nanoparticles by surface-initiated group transfer polymerization of diethyl vinylphosphonate. Angew. Chem. Int. Ed. 2014;53:12494–12497.
  • Soller BS, Zhang N, Rieger B. Catalytic precision polymerization: rare earth metal-mediated synthesis of homopolymers, block copolymers, and polymer brushes. Macromol. Chem. Phys. 2014;215:1946–1962.10.1002/macp.v215.20
  • Komber H, Steinert V, Voit B. 1H, 13C, and 31P NMR study on poly(vinylphosphonic acid) and its dimethyl ester. Macromolecules. 2008;41:2119–2125.10.1021/ma702662q
  • Bingöl B, Meyer WH, Wagner M, Wegner G. Synthesis, microstructure, and acidity of poly(vinylphosphonic acid). Macromol. Rapid Commun. 2006;27:1719–1724.10.1002/(ISSN)1521-3927
  • Li XS, Xu LD, Shan YB, Yuan BF, Feng YQ. Preparation of magnetic poly(diethyl vinylphosphonate-co-ethylene glycol dimethacrylate) for the determination of chlorophenols in water samples. J. Chromatogr. A. 2012;1265:24–30.10.1016/j.chroma.2012.09.083
  • Arcus CL, Matthews RJS. 883. Phosphonic polymers. Part I. The copolymerisation of diethyl vinylphosphonate and styrene. J. Chem. Soc. 1956;4607–4612.10.1039/jr9560004607
  • Lindsey RV; E. I. Du Pont de Nemours & Co. Copolymer of α,β-ethylenically unsaturated phosphonic acid derivatives. United States patent US 2,439,214. 1948 Apr 6.
  • Banks M, Ebdon JR, Johnson M. The flame-retardant effect of diethyl vinyl phosphonate in copolymers with styrene, methyl-methacrylate, acrylonitrile and acrylamide. Polymer. 1994;35:3470–3473.10.1016/0032-3861(94)90910-5
  • Gunes D, Karagoz B, Bicak N. Synthesis of methacrylate-based functional monomers via boron ester acidolysis and their polymerization. Des. Monomers Polym. 2009;12:445–454.10.1163/138577209X12486896623571
  • Babu GN, Narula A, Lu PH, Li X, Hsu SL, Chien JCW. Radiolysis of resist polymers. 2. Poly(haloalkylmethacrylates) and copolymers with methyl methacrylate. Macromolecules. 1984;17:2756–2761.10.1021/ma00142a055
  • Babu GN, Chien JCW. Radiolysis of resist polymers. 5. Poly(haloalkyl α-chloroacrylates) and copolymers with methyl methacrylate. Macromolecules. 1984;17:2761–2764.10.1021/ma00142a056
  • Ding JX, Xiao CS, He CL, Li MQ, Li D, Zhuang XL, Chen XS. Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology. 2011;22:494012–494020.
  • Li MM, Shan GR, Bao YZ, Pan PJ. Poly(ε-caprolactone)-graft-poly(N-isopropylacrylamide) amphiphilic copolymers prepared by a combination of ring-opening polymerization and atom transfer radical polymerization: synthesis, self-assembly, and thermoresponsive property. J. Appl. Polym. Sci. 2014;131:41115–41123.
  • Zhang Y, Zhao J, Yang P, He SJ, Huang HJ. Synthesis and characterization of energetic GAP-b-PAEMA block copolymer. Polym. Eng. Sci. 2012;52:768–773.10.1002/pen.v52.4
  • Price D, Pyrah K, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, Joseph P, Konkel CS. Flame retarding poly(methyl methacrylate) with phosphorus-containing compounds: comparison of an additive with a reactive approach. Polym. Degrad. Stab. 2001;74:441–447.10.1016/S0141-3910(01)00184-7
  • Blunden BM, Thomas DS, Stenzel MH. Macromolecular ruthenium complexes as anti-cancer agents. Polym. Chem. 2012;3:2964–2975.10.1039/c2py20439h
  • Fineman M, Ross SD. Linear method for determining monomer reactivity ratios in copolymerization. J. Polym. Sci. 1950;5:259–262.10.1002/pol.1950.120050210

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.