847
Views
4
CrossRef citations to date
0
Altmetric
Articles

Synthesis of PEO-based di-block glycopolymers at various pendant spacer lengths of glucose moiety and their in-vitro biocompatibility with MC3T3 osteoblast cells

, , , &
Pages 24-33 | Received 01 Apr 2015, Accepted 05 Sep 2015, Published online: 01 Oct 2015

References

  • Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005–2030. J. Bone Joint Surg. Am. 2007;89:780–785.10.2106/JBJS.F.00222
  • Trampuz A, Widmer AF. Infections associated with orthopaedic implants. Curr. Opin. Infect. Dis. 2006;19:349–356.10.1097/01.qco.0000235161.85925.e8
  • Hubbell JA. Biomaterials in tissue engineering. Biotechnology. 1995;13:565–576.10.1038/nbt0695-565
  • Nathaniel H, Mooney DJ. Review article inspiration and application in the evolution of biomaterials. Nature. 2009;462:426–432.
  • Kohn J. New approaches to biomaterials design. Nat. Mater. 2004;3:745–747.10.1038/nmat1249
  • Brahatheeswaran D, Yasuhiko Y, Toru M, et al. Polymeric Scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 2011; Article ID 290602:1–19.
  • Rajesh V, Dhirendra SK. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 2006;1:15–30.
  • Lutolf MP, Weber FE, Schmoekel HG, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 2003;21:513–518.10.1038/nbt818
  • You Z, Cao H, Gao J, et al. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties. Biomaterials. 2010;31:3129–3138.10.1016/j.biomaterials.2010.01.023
  • Dhayal M, Kapoor R, Sistla PG, et al. Strategies to prepare TiO2 thin films, doped with transition metal ions, that exhibit specific physicochemical properties to support osteoblast cell adhesion and proliferation. Mater. Sci. Eng. C. 2014;37:99–107.10.1016/j.msec.2013.12.035
  • Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 2001;12:107–124.10.1163/156856201744489
  • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543.10.1016/S0142-9612(00)00121-6
  • Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 2013;38:1487–1503.10.1016/j.progpolymsci.2013.06.001
  • Liu Y, Lim J, Teoh S-W. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol. Adv. 2013;31:688–705.10.1016/j.biotechadv.2012.10.003
  • Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog. Mater Sci. 2009;54:397–425.10.1016/j.pmatsci.2008.06.004
  • Long M, Rack HJ. Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 1998;19:1621–1639.10.1016/S0142-9612(97)00146-4
  • Ben-Nissan B, Choi AH, Bendavid A. Mechanical properties of inorganic biomedical thin films and their corresponding testing methods. Surf. Coat. Technol. 2013;233:39–48.10.1016/j.surfcoat.2012.11.020
  • Chen W, Villa-Diaz LG, Sun Y, et al. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano. 2012;6:4094–4103.10.1021/nn3004923
  • Kim BC, Moraes C, Huang J, et al. Fracture-based micro-and nanofabrication for biological applications. Biomater. Sci. 2014;2:288–296.10.1039/c3bm60276a
  • Curtis ASG, Dalby M, Gadegaard N. Cell signalling arising from nanotopography: implications for nanomedical devices. Nanomedicine. 2006;1:67–72.
  • Mohammed JS, DeCoster MA. McShane MJ, Micropatterning of nanoengineered surfaces to study neuronal cell attachment in vitro. Biomacromolecules. 2004;5:1745–1755.
  • Higuchi A, Ling Q-D, Chang Y, et al. Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 2013;113:3297–3328.10.1021/cr300426x
  • Mahmoudi M, Bonakdar S, Shokrgozar MA, et al. Cell-imprinted substrates direct the fate of stem cells. ACS Nano. 2013;7:8379–8384.10.1021/nn403844q
  • Dai L, Mau AWH. Surface and interface control of polymeric biomaterials, conjugated polymers, and cabon nanotubes. J. Phys. Chem. B. 2000;104:1891–1915.10.1021/jp9926793
  • Vijay YK, Dhayal M, Awasthi K, et al. Surface modification and synthesis of polymeric membrane for energy and biological applications. J. Biomed. Nanotechnol. 2006;2:144–151.10.1166/jbn.2006.026
  • Zhao Y, Wong SM, Wong HW, et al. Effects of carbon and nitrogen plasma immersion ion implantation on in vitro and in vivo biocompatibility of titanium alloy. ACS Appl. Mater. Interfaces. 2013;5:1510–1516.10.1021/am302961h
  • Desmet T, Morent R, Geyter ND, et al. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules. 2009;10:2351–2378.10.1021/bm900186s
  • Dhayal M, Cho SI, Moon JY, et al. S180 cell growth on low ion energy plasma treated TiO2 thin films. Appl. Surf. Sci. 2008;254:3331–3338.10.1016/j.apsusc.2007.11.026
  • Loty C, Sautier JM, Tan MT, et al. Bioactive glass stimulates in-vitro osteoblast differentiation and creates a favorable template for bone tissue formation. J. Bone Miner. Res. 2001;16:231–239.10.1359/jbmr.2001.16.2.231
  • Kiessling LL, Grim JC. Glycopolymer probes of signal transduction. Chem. Soc. Rev. 2013;42:4476–4491.10.1039/c3cs60097a
  • Ladmiral V, Melia E, Haddleton DM. Synthetic glycopolymers: an overview. Eur. Polym. J. 2004;40:431–449.10.1016/j.eurpolymj.2003.10.019
  • Ambrosi M, Cameron NR, Davis BG, et al. Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands. Org. Biomol. Chem. 2005;3:1476–1480.10.1039/b411555b
  • Spain SG, Gibson MJ, Cameron NR. Recent advances in the synthesis of well-defined glycopolymers. J. Polym. Sci., Part A: Polym. Chem. 2007;45:2059–2072.10.1002/(ISSN)1099-0518
  • Dam TK, Brewer FC. Maintenance of cell surface glycan density by lectin–glycan interactions: a homeostatic and innate immune regulatory mechanism. Glycobiology. 2010;20:1061–1064.10.1093/glycob/cwq084
  • Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3:97–130.10.1093/glycob/3.2.97
  • Takaoka K, Koezuka M, Nakahara H. Telopeptide-depleted bovine skin collagen as a carrier for bone morphogenetic protein. J. Orthop. Res. 1991;9:902–907.10.1002/(ISSN)1554-527X
  • Rodeo SA, Suzuki K, Deng X, et al. Use of recombinant bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am. J. Sports Med. 1999;27:476–488.
  • DeLustro F, Dasch J, Keefe J, et al. Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives. Clin. Orthop. 1990;260:263–279.
  • Butler D, Wadman M, Lehrman S, et al. Last chance to stop and think on risks of xenotransplants. Nature. 1998;391:320–324.
  • Bach FH, Fishman JA, Daniels N, et al. Uncertainty in xenotransplantation: Individual benefit versus collective risk. Nat. Med. 1998;4:141–144.10.1038/nm0298-141
  • Saito N, Okada T, Horiuchi H, et al. A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat. Biotechnol. 2001;19:332–335.10.1038/86715
  • Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–2175.10.1016/S0142-9612(03)00044-9
  • Humber CC, Sándor GK, Davis JM, et al. Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010;109:372–384.10.1016/j.tripleo.2009.10.008
  • Yang H, Sun X, Liu G, et al. Glucose-responsive complex micells for self-regulated release of insulin under physiological conditions. Soft Matter. 2013;9:8589–8599.10.1039/c3sm51538a
  • Mancini RJ, Lee J, Maynard HD. Trehalose glycopolymers for stabilization of protein conjugates to environmental stressors. J. Am. Chem. Soc. 2012;134:8474–8479.10.1021/ja2120234
  • Ghadban A, Albertin L. Synthesis of glycopolymer architectures by reversible-deactivation radical polymerization. Polymers. 2013;5:431–526.10.3390/polym5020431
  • Miura Y. Design and synthesis of well-defined glycopolymers for the control of biological functionalities. Polym. J. 2012;44:679–689.10.1038/pj.2012.4
  • Lowe AB, Sumerlin BS, McCormick CL. The direct polymerization of 2-methacryloxyethyl glucoside via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer. 2003;44:6761–6765.10.1016/j.polymer.2003.08.039
  • Cameron NR, Spain SG, Kingham JA, et al. Synthesis of well-defined glycopolymers and some studies of their aqueous solution behaviour. Faraday Discuss. 2008;139:359–368.10.1039/b717177c
  • Wang Y, Zhang X, Mu J, et al. Synthesis and pH/sugar/salt-sensitivity study of boronate crosslinked glycopolymer nanoparticles. New J. Chem. 2013;37:796–803.10.1039/c2nj40998d
  • Zhang Q, Haddleton DM. Synthetic glycopolymers: some recent developments. Adv. Polym. Sci. 2013;262:39–59.10.1007/978-3-319-03719-6
  • Narain R, Armes SP. Synthesis of low polydispersity, controlled-structure sugar methacrylate polymers under mild conditions without protecting group chemistry. Chem. Commun. 2002;23:2776–2777.
  • Narain R, Armes SP. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers. Biomacromolecules. 2003;4:1746–1758.10.1021/bm034166e
  • You L-C, Lu F-Z, Li Z-C, et al. Gluose-sensitive aggregates formed by poly(ethylene oxide)-block-poly(2-glucosyl-oxyethyl acrylate) with concanavalin A in dilute aqueous medium. Macromolecules. 2003;36:1–4.10.1021/ma025641o
  • Pasparakis G, Alexander C. Sweet talking double hydrophilic block copolymer vesicles. Angew. Chem. Int. Ed. 2008;47:4847–4850.10.1002/(ISSN)1521-3773
  • Suriano F, Coulembier O, Degée P, et al. Carbohydrate-based amphiphilic diblock copolymers: synthesis, characterization, and aqueous properties. J. Polym. Sci., Part A: Polym. Chem. 2008;46:3662–3672.10.1002/(ISSN)1099-0518
  • Sim M, Kondo H, Wong CH. Synthesis of dibenzyl glycosyl phosphites using dibenzyl N,N-diethylphosphoramidite as phosphitylating reagent: an effective route to glycosyl phosphates, nucleotides, and glycosides. J. Am. Chem. Soc. 1993;115:2260–2267.10.1021/ja00059a023
  • Woodcock JW, Jiang X, Wright RAE, et al. Enzyme-induced formation of thermoreversible micellar gels from aqueous solutions of multiresponsive hydrophilic ABA triblock copolymers. Macromolecules. 2011;44:5764–5775.10.1021/ma200991d
  • Petrovica Z, Konstantinovic S, Spasojevic A. BF3 etherate-induced formation of C7-C16-alkyl-β-d-glucopyranosides. Indian J. Chem. Sect. B. 2004:132–134.
  • Trinadh M, Kannan G, Rajasekhar T, et al. Synthesis of glycopolymers at various pendant spacer lengths of glucose moiety and their effects on adhesion, viability and proliferation of osteoblast cells. RSC Adv. 2014;4:37400–37410.10.1039/C4RA05436A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.