885
Views
5
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of diethyl-dithiocarbamic acid 2-[4-(2-diethylthiocarbamoylsulfanyl-2-phenyl-acetyl)-2,5-dioxo-piperazin-1-yl]-2-oxo-1-phenyl-ethyl ester as new reversible addition-fragmentation chain transfer agent for polymerization of ethyl methacrylate

, , , &
Pages 56-66 | Received 12 Jun 2015, Accepted 21 Aug 2015, Published online: 02 Nov 2015

References

  • Knight AS, Zhou EY, Francis MB, et al. Sequence programmable peptoid polymers for diverse materials applications. Adv. Mater. 2015. doi:10.1002/adma.201500275.
  • Torkpur-Biglarianzadeh M, Salami-Kalajahi M. Multilayer fluorescent magnetic nanoparticles with dual thermoresponsive and pH-sensitive polymeric nanolayers as anti-cancer drug carriers. RSC. Adv. 2015;5:29653–29662.10.1039/C5RA01444A
  • Husseman M, Malmström EE, McNamara M, et al. Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules. 1999;32:1424–1431.10.1021/ma981290v
  • Banaei M, Salami-Kalajahi M. Synthesis of poly(2-hydroxyethyl methacrylate)-grafted poly(aminoamide) dendrimers as polymeric nanostructures. Colloid Polym. Sci. 2015;293:1553–1559.10.1007/s00396-015-3559-y
  • Zhang H. Controlled/“living” radical precipitation polymerization: a versatile polymerization technique for advanced functional polymers. Eur. Polym. J. 2013;49:579–600.10.1016/j.eurpolymj.2012.12.016
  • Mahjub A, Mohammadi H, Salami-Kalajahi M, et al. Simulation of reversible chain transfer catalyzed polymerization (RTCP): effect of different iodide based catalysts. J. Polym. Res. 2012;19:9740–9748.10.1007/s10965-011-9740-1
  • Nikdel M, Salami-Kalajahi M, Hosseini MS. Dual thermo- and pH-sensitive poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted graphene oxide. Colloid Polym. Sci. 2014;292:2599–2610.10.1007/s00396-014-3313-x
  • Le Droumaguet B, Nicolas J. Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polym. Chem. 2010;1:563–598.10.1039/b9py00363k
  • Panahian P, Salami-Kalajahi M, Salami Hosseini M. Synthesis of dual thermosensitive and pH-sensitive hollow nanospheres based on poly (acrylic acid-b-2-hydroxyethyl methacrylate) via an atom transfer reversible addition–fragmentation radical process. Ind. Eng. Chem. Res. 2014;53:8079–8086.10.1021/ie500892b
  • Nikdel M, Salami-Kalajahi M, Salami Hosseini MS. Synthesis of poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted graphene oxide nanosheets via reversible addition–fragmentation chain transfer polymerization. RSC Adv. 2014;4:16743–16750.10.1039/c4ra01701c
  • Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, et al. Effect of silica nanoparticle loading and surface modification on the kinetics of RAFT polymerization. J. Polym. Eng. 2012;32:13–22.
  • Ganjeh-Anzabi P, Haddadi-Asl V, Salami-Kalajahi M, et al. Kinetic investigation of the reversible addition-fragmentation chain transfer polymerization of 1, 3-butadiene. J. Polym. Res. 2013;20:248–255.10.1007/s10965-013-0248-8
  • Benaglia M, Chiefari J, Chong YK, et al. Universal (switchable) RAFT agents. J. Am. Chem. Soc. 2009;131:6914–6915.10.1021/ja901955n
  • Liu J, Bulmus V, Herlambang DL, et al. In situ formation of protein–polymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew. Chem. Int. Ed. 2007;46:3099–3103.10.1002/(ISSN)1521-3773
  • Sarsabili M, Parvini M, Salami‐Kalajahi M, et al. In situ reversible addition–fragmentation chain transfer polymerization of styrene in the presence of mcm‐41 nanoparticles: comparing “grafting from” and “grafting through” approaches. Adv. Polym. Tech. 2013;32. doi: 10.1002/adv.21372.
  • Zhou G, Harruna II. Synthesis and characterization of bis (2, 2ʹ: 6ʹ, 2″-terpyridine) ruthenium (II)-connected diblock polymers via RAFT polymerization. Macromolecules. 2005;38:4114–4123.10.1021/ma047955c
  • Willcock H, O’Reilly RK. End group removal and modification of RAFT polymers. Polym. Chem. 2010;1:149–157.10.1039/B9PY00340A
  • Zhao Y, Perrier S. Synthesis of well-defined conjugated copolymers by RAFT polymerization using cysteine and glutathione-based chain transfer agents. Chem. Commun. 2007;41:4294–4296.10.1039/b708293b
  • Hentschel J, Bleek K, Ernst O, et al. Easy access to bioactive peptide−polymer conjugates via RAFT. Macromolecules. 2008;41:1073–1075.10.1021/ma8000934
  • Bathfield M, Daviot D, D’Agosto F, et al. Synthesis of lipid-α-end-functionalized chains by RAFT polymerization. Stabilization of lipid/polymer particle assemblies. Macromolecules. 2008;41:8346–8353.
  • De P, Li M, Gondi SR, et al. Temperature-regulated activity of responsive polymer−protein conjugates prepared by grafting-from via RAFT polymerization. J. Am. Chem. Soc. 2008;130:11288–11289.10.1021/ja804495v
  • Bhattacharjee S, Bong D. Protein-polymer grafts via a soy protein derived macro-RAFT chain transfer agent. J. Polym. Environ. 2011;19:203–208.10.1007/s10924-010-0264-2
  • Wakayama M, Katsuno Y, Hayashi S, et al. Cloning and sequencing of a gene encoding D-aminoacylase from Alcaligenes xylosoxydans subsp. Xylosoxydans A-6 and expression of the gene in Escherichia coli. Biosci. Biotechnol. Biochem. 1995;59:2115–2119.10.1271/bbb.59.2115
  • Bauri K, Roy SG, Pant S, et al. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers. Langmuir. 2013;29:2764–2774.10.1021/la304918s
  • Dutta P, Dey J. Drug solubilization by amino acid based polymeric nanoparticles: characterization and biocompatibility studies. Int. J. Pharm. 2011;421:353–363.10.1016/j.ijpharm.2011.10.011
  • Ali SA. Novel cross-linked polymers having pH-responsive amino acid residues for the removal of Cu2+ from aqueous solution at low concentrations. J. Hazard. Mater. 2013;248–249:47–58.10.1016/j.jhazmat.2012.12.052
  • Mallakpour S, Dinari M. Progress in synthetic polymers based on natural amino acids. J. Macromol. Sci. Part A. 2011;48:644–679.10.1080/15226514.2011.586289
  • Dmitrovic V, Habraken GJ, Hendrix MM, et al. Random poly(amino acid)s synthesized by ring opening polymerization as additives in the biomimetic mineralization of CaCO3. Polymers. 2012;4:1195–1210.10.3390/polym4021195
  • Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process. Aust. J. Chem. 2005;58:379–410.10.1071/CH05072
  • Legge TM, Slark AT, Perrier S. Novel difunctional reversible addition fragmentation chain transfer (RAFT) agent for the synthesis of telechelic and ABA triblock methacrylate and acrylate copolymers. Macromolecules. 2007;40:2318–2326.10.1021/ma061372g
  • Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, et al. Matrix-grafted multiwalled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetic study. Int. J. Chem. Kinet. 2012;44:555–569.10.1002/kin.v44.8
  • Sobani M, Haddadi-Asl V, Mirshafiei-Langari S-A, et al. A kinetics study on the in situ reversible addition–fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Des. Monomers Polym. 2014;17:245–254.10.1080/15685551.2013.840496
  • Fallahi H, Koohmareh GA. Preparation of polystyrene/MMT nanocomposite through in situ RAFT polymerization by new chain transfer agent derived from bisphenol A. J. Appl. Polym. Sci. 2013;127:523–529.10.1002/app.37833
  • Otsu T, Matsunaga T, Kuriyama A, et al. Living radical polymerization through the use of iniferters: controlled synthesis of polymers. Eur. Polym. J. 1989;25:643–650.10.1016/0014-3057(89)90023-2
  • Sarsabili MR, Parvini M, Salami-Kalajahi M, et al. Effect of MCM-41 nanoparticles on the kinetics of free radical and RAFT polymerization of styrene. Iran. Polym. J. 2013;22:155–163.10.1007/s13726-012-0114-2
  • Fares S. Influence of gamma-ray irradiation on optical and thermal degradation of poly (ethyl-methacrylate)(PEMA) polymer. Nat. Sci. 2012;4:499–507.
  • Maitra S, Bandyopadhyay N, Das S, et al. Non-isothermal decomposition kinetics of alkaline earth metal carbonates. J. Am. Ceram. Soc. 2007;90:1299–1303.10.1111/jace.2007.90.issue-4
  • Friedman HL. Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Polym. Symp. 1964;6:183–195.
  • Nam Jd, Seferis JC. A composite methodology for multistage degradation of polymers. J. Polym. Sci., Part B: Polym. Phys. 1991;29:601–608.10.1002/polb.1991.090290509
  • Anderson DA, Freeman ES. The kinetics of the thermal degradation of polystyrene and polyethylene. J. Polym. Sci. 1961;54:253–260.10.1002/pol.1961.1205415920
  • Radhakrishnan T. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: thermal degradation of polydimethylsiloxanes. J. Appl. Polym. Sci. 1999;73:441–450.10.1002/(ISSN)1097-4628
  • Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, et al. Properties of PMMA/carbon nanotubes nanocomposites prepared by “grafting through” method. Polym. Compos. 2012;33:215–224.10.1002/pc.v33.2
  • Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, et al. A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. J. Polym. Res. 2012;19:9793–97103.10.1007/s10965-011-9793-1
  • Kurt A, Koca M. Blending of poly(ethyl methacrylate) with poly(2-hydroxy-3-phenoxypropyl methacrylate): thermal and optical properties. Arabian J. Sci. Eng. 2014;39:5413–5420.10.1007/s13369-014-1103-x
  • Chong B, Moad G, Rizzardo E, et al. Thermolysis of RAFT-synthesized poly(methyl methacrylate). Aust. J. Chem. 2006;59:755–762.10.1071/CH06229
  • Costache MC, Wang D, Heidecker MJ, et al. The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polym. Adv. Technol. 2006;17:272–280.10.1002/(ISSN)1099-1581
  • Katsikas L, Avramovic M, Cortés BDR, et al. The thermal stability of poly(methyl methacrylate) prepared by raft polymerisation. J. Serb. Chem. Soc. 2008;73:915–921.10.2298/JSC0809915K
  • Zhao Y, Perrier S. Synthesis of poly (methyl acrylate) grafted onto silica particles by Z-supported RAFT polymerization. Macromol. Symp. 2007;248:94–103.
  • Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, et al. Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. J. Iran. Chem. Soc. 2012;9:877–887.10.1007/s13738-012-0104-5
  • Rahimi-Razin S, Salami-Kalajahi M, Haddadi-Asl V, et al. Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. J. Polym. Res. 2012;19:9954–9969.10.1007/s10965-012-9954-x
  • Rekik W, Naïli H, Bataille T, et al. Supramolecular networks of transition metal sulfates templated by piperazine. Inorg. Chim. Acta. 2006;359:3954–3962.10.1016/j.ica.2006.05.030
  • Lee H-Y, Kim B. Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube. Biosens. Bioelectron. 2009;25:587–591.10.1016/j.bios.2009.03.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.