1,042
Views
4
CrossRef citations to date
0
Altmetric
Articles

The effects of different amounts of drug microspheres on the vivo and vitro performance of the PLGA/β-TCP scaffold

, , &
Pages 351-362 | Received 11 Aug 2016, Accepted 09 Nov 2016, Published online: 28 Nov 2016

References

  • Kabu S, Gao Y, Kwon BK, et al. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Controlled Release. 2015;219:141–154.10.1016/j.jconrel.2015.08.060
  • Perlaki CM, Liu Q, Lim M. Raman spectroscopy based techniques in tissue engineering – an overview. Appl Spectrosc Rev. 2014;49:513–532.10.1080/05704928.2013.863205
  • Zhang X, Li XW, Li JG, et al. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Mater Sci Eng: C. 2014;42:362–367.10.1016/j.msec.2014.05.044
  • Agarwal S, Greiner A, Wendorff JH. Functional materials by electrospinning of polymers. Prog Polym Sci. 2013;38:963–991.10.1016/j.progpolymsci.2013.02.001
  • Wang J, Geng G, Wang A, et al. Double biomimetic fabrication of robustly superhydrophobic cotton fiber and its application in oil spill cleanup. Ind Crops Prod. 2015;77:36–43.10.1016/j.indcrop.2015.08.044
  • Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–17.10.1016/j.ejps.2014.11.009
  • Huang TQ, Qu X, Liu J, et al. 3D printing of biomimetic microstructures for cancer cell migration. Biomed Microdevices. 2014;16:127–132.10.1007/s10544-013-9812-6
  • Giannitelli SM, Mozetic P, Trombetta M, et al. Combined additive manufacturing approaches in tissue engineering. Acta Biomater. 2015;24:1–11.10.1016/j.actbio.2015.06.032
  • Zheng Y, Dong R, Shen J, et al. Tunable shape memory performances via multilayer assembly of thermoplastic polyurethane and polycaprolactone. ACS Appl Mater Interfaces. 2016;8:1371–1380.10.1021/acsami.5b10246
  • Kim PH, Yim HG, Choi YJ, et al. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J Controlled Release. 2014;187:1–13.10.1016/j.jconrel.2014.05.010
  • Domingos M, Chiellini F, Gloria A, et al. Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly (ϵ-caprolactone) scaffolds. Rapid Prototyping J. 2012;18:56–67.10.1108/13552541211193502
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15:3640–3659.10.3390/ijms15033640
  • Shalumon KT, Deepthi S, Anupama MS, et al. Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol. 2015;72:1048–1055.10.1016/j.ijbiomac.2014.09.058
  • Lin KF, He S, Song Y, et al. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2016;8:6905–6916.10.1021/acsami.6b00815
  • Bai Y, Yin G, Huang Z, et al. Localized delivery of growth factors for angiogenesis and bone formation in tissue engineering. Int Immunopharmacol. 2013;16:214–223.10.1016/j.intimp.2013.04.001
  • Senapati S, Thakur R, Verma SP, et al. Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions. J Controlled Release. 2016;224:186–198.10.1016/j.jconrel.2016.01.016
  • Levingstone TJ, Matsiko A, Dickson GR, et al. A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater. 2014;10:1996–2004.10.1016/j.actbio.2014.01.005
  • Hasan A, Memic A, Annabi N, et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10:11–25.10.1016/j.actbio.2013.08.022
  • Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–554.10.1016/j.tibtech.2012.07.005
  • Laurencin CT, Ashe KM, Henry N, et al. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discovery Today. 2014;19:794–800.10.1016/j.drudis.2014.01.012
  • Wang H, Zou Q, Boerman OC, et al. Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. J. Controlled Release. 2013;166:172–181.10.1016/j.jconrel.2012.12.015
  • Lee SS, Huang BJ, Kaltz SR, et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013;34:452–459.10.1016/j.biomaterials.2012.10.005
  • Liu Y, Lim J, Teoh SH. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv. 2013;31:688–705.10.1016/j.biotechadv.2012.10.003
  • Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci. 2013;38:1487–1503.10.1016/j.progpolymsci.2013.06.001
  • Maestrelli F, Zerrouk N, Cirri M, et al. Comparative evaluation of polymeric and waxy microspheres for combined colon delivery of ascorbic acid and ketoprofen. Int J Pharm. 2015;485:365–373.10.1016/j.ijpharm.2015.02.073
  • Bohr A, Yang M, Baldursdóttir S, et al. Particle formation and characteristics of Celecoxib-loaded poly(lactic-co-glycolic acid) microparticles prepared in different solvents using electrospraying. Polymer. 2012;53:3220–3229.10.1016/j.polymer.2012.05.002
  • Zhang L, Zhang J, Ling Y, et al. Sustained release of melatonin from poly (lactic-co-glycolic acid)(PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro [J]. J Pineal Res. 2013;54:24–32.
  • Gaharwar AK, Mihaila SM, Kulkarni AA, et al. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. J Controlled Release. 2014;187:66–73.10.1016/j.jconrel.2014.04.035
  • Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, et al. Preclinical evaluation of injectable bone substitute materials. J Tissue Eng Regener Med. 2015;9:191–209.10.1002/term.v9.3
  • Liulan Lin, Liping Zhou, Zhikun Wang, et al. Freeze drying technology forming drug release bionic scaffolds with gradient structure. Appl Mech Mater. 2012;1:3935–3939.
  • Giannitelli SM, Accoto D, Trombetta M, et al. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 2014;10:580–594.10.1016/j.actbio.2013.10.024
  • Yin H, Wang Y, Sun Z, et al. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater. 2016;33:96–109.10.1016/j.actbio.2016.01.024
  • Lin L, Dong Y, Zhou Q. Sustained release of OIC-A006 from PLGA microspheres to induce osteogenesis of composite PLGA/β-TCP scaffolds. Sci Eng Compos Mater.
  • Sun X, Kang Y, Bao J, et al. Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials. 2013;34:4971–4981.10.1016/j.biomaterials.2013.03.015
  • Yin F, Cai J, Zen W, et al. Cartilage regeneration of adipose-derived stem cells in the TGF-β1-immobilized PLGA-gelatin scaffold. Stem Cell Rev Rep. 2015;11:453–459.10.1007/s12015-014-9561-9
  • Lin L, Wang Z, Zhou L, et al. The influence of prefezing temperature on pore structure in freeze-dried β-CPT scaffolds. Proc Instit Mech Eng, Part H: J Eng Med. 2013;227:50–57.10.1177/0954411912458739