12,066
Views
92
CrossRef citations to date
0
Altmetric
Review Article

Review of novel energetic polymers and binders – high energy propellant ingredients for the new space race

ORCID Icon
Pages 54-65 | Received 06 Aug 2018, Accepted 31 Oct 2018, Published online: 01 Mar 2019

References

  • Sutton GP, Biblarz O. Rocket propulsion elements. Hoboken (NJ): John Wiley & Sons; 2016.
  • Davenas A. Solid rocket propulsion technology. Paris: Newnes; 2012.
  • Guery JF, Chang IS, Shimada T, et al. Solid propulsion for space applications: an updated roadmap. Acta Astronaut. 2010;66(1–2):201–219.
  • Penner SS, Ducarm J. The chemistry of propellants: a meeting organised by the AGARD combustion and propulsion panel. Paris: Pergamon; 1960.
  • Snyder JS, Lock RE, Manzella D, et al. Additional mission applications for NASA’s 13.3-kW ion propulsion system. In: Aerospace Conference; Big Sky (MT); IEEE; 2016. p. 1–13
  • Dawson L. The politics and perils of space exploration. Tacoma (WA): Springer; 2017.
  • DeLuca LT, Galfetti L, Maggi F, et al. Characterization of HTPB-based solid fuel formulations: performance, mechanical properties, and pollution. Acta Astronaut. 2013;92(2):150–162.
  • Thomas D, Eirik AL. Insensitive minimum smoke propellants for tactical missiles. Norwegian Defence Research Establishment (FFI) – Land Systems Division: Nammo Raufoss AS – Aerospace Propulsion; 2018.
  • Abusaidi H, Ghorbani M, Ghaieni HR. Development of composite solid propellant based on nitro functionalized hydroxyl-terminated polybutadiene. Propellants Explos Pyrotech. 2017;42(6):671–675.
  • Provatas A. Energetic polymers and plasticisers for explosive formulations-A review of recent advances. Melbourne (Australia): Defence Science And Technology Organisation ; 2000.
  • Frankel MB, Grant LR, Flanagan JE. Historical development of glycidyl azide polymer. J Propul Power. 1992;8(3):560–563.
  • Ahad E, inventor; Canada Minister of National Defence, assignee. Direct conversion of epichlorohydrin to glycidyl azide polymer. United States patent US 4,891,438. 1990 Jan 2.
  • Eroglu MS. GAP pre-polymer, as an energetic binder and high-performance additive for propellants and explosives: a review. Org Commun. 2017;10(3):135.
  • Murali Mohan Y, Padmanabha Raju M, Mohana Raju K. Synthesis, spectral and DSC analysis of glycidyl azide polymers containing different initiating diol units. J Appl Polym Sci. 2004;93(5):2157–2163.
  • Wagner RI, Wilson ER, Grant LR, inventors; Boeing North American Inc, assignee, et al.. Glycidyl azide polymer and method of preparation. United States patent US 4,937,361. 1990 June 26.
  • Mura C, Fruci S, Lamia P, et al.. Synthesis of GAP and PAMMO homopolymers from mesylate polymeric precursors. J Energy Mater. 2016;34(2):216–233.
  • Hori K, Kimura M. Combustion mechanism of glycidyl azide polymer. Propellants Explos Pyrotech. 1996;21(3):160–165.
  • Kubota N, Sonobe T. Combustion mechanism of azide polymer. Propellants Explos Pyrotech. 1988;13(6):172–177.
  • Pisharath S, Ang HG. Synthesis and thermal decomposition of GAP–poly (BAMO) copolymer. Polym Degrad Stab. 2007;92(7):1365–1377.
  • Li B, Niu H, Zhang J, et al. Probing the compatibility and interaction of energetic binders based on 3, 3-bis (azidomethyl) oxetane with some explosives: thermal, interfacial and simulation studies. Polym Int. 2018;67(1):132–140.
  • Vasudevan V, Sundararajan G. Synthesis of GAP-PB-GAP triblock copolymer and application as modifier in AP/HTPB composite propellant. Propellants Explos Pyrotech. 1999;24(5):295–300.
  • Eroglu MS, Hazer B, Güven O. Synthesis and characterization of hydroxyl terminated poly (butadiene)-g-poly (glycidyl azide) copolymer as a new energetic propellant binder. Polym Bull. 1996;36(6):695–701.
  • Keicher T, Kuglstatter W, Eisele S, et al. Isocyanate-free curing of glycidyl azide polymer (GAP) with Bis-Propargyl-Succinate (II). Propellants Explos Pyrotech. 2009;34(3):210–217.
  • Menke K, Heintz T, Schweikert W, et al. Formulation and properties of ADN/GAP propellants. Propellants Explos Pyrotech. 2009;34(3):218–230.
  • Sonawane S, Anniyappan M, Athar J, et al. Isocyanate-free curing of glycidyl azide polymer with Bis–propargylhydroquinone. Propellants Explos Pyrotech. 2017;42(4):386–393.
  • Jensen TL, Unneberg E, Kristensen TE. Smokeless GAP-RDX composite rocket propellants containing diaminodinitroethylene (FOX-7). Propellants Explos Pyrotech. 2017;42(4):381–385.
  • Ding Y, Hu C, Guo X, et al. Structure and mechanical properties of novel composites based on glycidyl azide polymer and propargyl‐terminated polybutadiene as potential binder of solid propellant. J Appl Polym Sci. 2014;131(7):Article ID 40007, 1–8.
  • Hu C, Guo X, Jing Y, et al. Structure and mechanical properties of crosslinked glycidyl azide polymers via click chemistry as potential binder of solid propellant. J Appl Polym Sci. 2014;131(16):Article ID 40636, 1–7.
  • Min BS, Park YC, Yoo JC. A study on the triazole crosslinked polymeric binder based on glycidyl azide polymer and dipolarophile curing agents. Propellants Explos Pyrotech. 2012;37(1):59–68.
  • Kshirsagar A, Gite V, Hundiwale D, et al. Microwave assisted synthesis and characterization of glycidyl azide polymers containing different initiating diol units. Cent Eur J Energy Mat. 2015;12(4):757–767.
  • Gaur B, Lochab B, Choudhary V, et al. Thermal behaviour of poly (allyl azide). J Therm Anal Calorim. 2003;71(2):467–479.
  • Mohan YM, Mani Y, Raju KM. Synthesis of azido polymers as potential energetic propellant binders. Des Monomers Polym. 2006;9(3):201–236.
  • Bolton P, Golding P, Murray CB, et al. Enhanced energetic polyphosphazenes. Proceedings of the Insensitive Munitions and Energetic Materials Technical Symposium, (IMEMTS 2006); Bristol; 2006.
  • Golding P, Trussell SJ, Colclough ME, inventors; United Kingdom Secretary of State for Defence, assignee, et al.. Energetic polyphosphazenes. United States patent US 8,268,959. 2012.
  • Pant CS, Mada SS, Mehilal BS, et al. Synthesis of azide-functionalized hydroxyl-terminated polybutadiene. J Energy Mater. 2016;34(4):440–449.
  • Yoon SW, Choi MC, Chang YW, et al. Preparation of azidated polybutadiene (Az-PBD)/Ethylene-Vinyl acetate copolymer (EVA) blends for the application of energetic thermoplastic elastomer. Korean J Chem Eng. 2015;53(3):282–288.
  • Leeming WBH, Marshall EJ, Bull H, et al. An investigation into poly(GLYN) cure stability. Proceedings Of The 27th international annual conference of ICT; 1996 June 25–28; Karlsurhe, Germany.
  • Bunyan PF, Clements BW, Cunlifee AV, et al.. Stability studies on end modified poly(GLYN). Proceedings of American Defense Preparedness Association (ADPA). International symposium on energetic materials technology. Vol. 1, 1997 Oct 06–09; Tampa (FL), p. 253.
  • Wang W, Han SM, Zhang DL, et al. Synthesis and curing of epoxy-teminated poly(glycidyl nitrate). Chin J Energy Mater. 2017;25(1):49–52.
  • Paraskos AJ, Dewey MA, Edwards W, inventors; Alliant Techsystems Inc, assignee. One pot procedure for poly (glycidyl nitrate) end modification. United States patent US 7,714,078. 2010.
  • Colclough ME, Paul NC. Nitration: nitrated hydroxy-terminated polybutadiene: synthesis and properties. American Chemical Society. 1996.
  • Shekhar Pant C, Santosh MS, Banerjee S, et al. Single step synthesis of nitro‐functionalized hydroxyl‐terminated polybutadiene. Propellants Explos Pyrotech. 2013;38(6):748–753.
  • Wang Q, Wang L, Zhang X, et al. Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater. 2009;172(2–3):1659–1664.
  • Abusaidi H, Ghaieni HR, Ghorbani M. Influences of NCO/OH and triol/diol ratios on the mechanical properties of nitro-HTPB based polyurethane elastomers. Iran J Chem Chem Eng. 2017;36(5):55–63.
  • Abdullah M, Gholamian F, Zarei AR. Investigation of composite solid propellants based on nitrated hydroxyl-terminated polybutadiene binder. J Propul Power. 2014;30(3):862–864.
  • Zhang Y, Pang A, Xiao J, et al. A novel kind of green solid propellant containing H2O2 Cured at room temperature (SPHP). Propellants Explos Pyrotech. 2015;40(5):772–778.
  • Miller CG, Williams GK, inventors; Automotive Systems Laboratory Inc, assignee. Water-based synthesis of poly (tetrazoles) and articles formed therefrom. United States patent US 7,776,169. 2010.
  • Wang Y, Chen H, Xu Y, et al. Synthesis of polyvinyltetrazole resin by combination of RAFT polymerization and click chemistry for adsorption of Hg (II). J Macromol Sci Part A. 2015;52(9):707–712.
  • Huang MR, Li XG, Li SX, et al. Resultful synthesis of polyvinyltetrazole from polyacrylonitrile. React Funct Polym. 2004;59(1):53–61.
  • Aronson JB. The synthesis and characterization of energetic materials from sodium azide [dissertation]. Atalanta (GE): Georgia Institute of Technology; 2004.
  • Shankar RM, Roy TK, Jana T. Terminal functionalized hydroxyl‐terminated polybutadiene: an energetic binder for propellant. J Appl Polym Sci. 2009;114(2):732–741.
  • Abdullah M, Gholamian F, Zarei AR. Performance analysis of composite propellant based on HTPB–DNCB. J Propul Power. 2014;30(2):526–528.
  • Rao BN, Yadav PJ, Malkappa K, et al. Triazine functionalized hydroxyl terminated polybutadiene polyurethane: influence of triazine structure. Polymer. 2015;77:323–333.
  • Malkappa K, Jana T. Simultaneous improvement of tensile strength and elongation: an unprecedented observation in the case of hydroxyl terminated polybutadiene polyurethanes. Ind Eng Chem Res. 2013 Aug 28;52(36):12887–12896.
  • Betzler FM, Boller R, Grossmann A, et al. Novel insensitive energetic nitrogen-rich polymers based on tetrazoles. Z Naturforsch B. 2013;68(5–6):714–718.
  • Betzler FM. Investigation of nitrogen-rich polymers based on cellulose, tetrazoles and triazoles [Doctoral dissertation, lmu]. Munich; 2012.
  • Kohga M, Miyano W, Kojima T. Burning characteristics of polytetrahydrofuran-based composite propellant. J Propul Power. 2006;22(6):1418–1421.
  • Kohga M, Naya T, Shioya S. Viscoelastic and thermal decomposition behaviors of polytetrahydrofuran binder prepared using glycerin as a crosslinking modifier. J Appl Polym Sci. 2013;128(3):2089–2097.
  • Kohga M. Mechanical characteristics and thermal decomposition behavior of polytetrahydrofuran binder using glycerol propoxylate (Mn= 260) as crosslinking agent. Propellants Explos Pyrotech. 2013;38(3):366–371.
  • Kohga M. Mechanical characteristics and thermal decomposition behaviors of polytetrahydrofuran binder with glycerol propoxylate (Mn= 1500) as a crosslinking agent. Propellants Explos Pyrotech. 2017;42(11):1283–1288.
  • Cruise DR. Theoretical computations of equilibrium compositions, thermodynamic properties, and performance characteristics of propellant systems (ADA069832). USA: Defense Technical Information Center; 1979.
  • De Paz JL, Ciller J. On the use of AMl and PM3 methods on energetic compounds. Propellants Explos Pyrotech. 1993;18(1):33–40.
  • Gong C, Zeng X, Ju X. Comparative PM6 and PM3 study on heats of formation for high energetic materials. Comp Appl Chem. 2014;31(4): 445–450. Chinese.
  • Montgomery JA Jr, Frisch MJ, Ochterski JW, et al. A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys. 2000;112(15):6532–6542.
  • SpaceX - Falcon 9 Overview. Space exploration technologies corp. 2013. Available From: https://web.archive.org/web/20130715094112/http://www.spacex.com/falcon9
  • Klapötke TM. Chemistry of high-energy materials. Berlin: Walter de Gruyter GmbH & Co KG; 2017.
  • GöBel M, Karaghiosoff K, KlapöTke TM, et al. Nitrotetrazolate-2 N-oxides and the strategy of N-oxide introduction. J Am Chem Soc. 2010;132(48):17216–17226.
  • Lempert DB, Nechiporenko GN, Manelis GB. Energetic characteristics of solid composite propellants and ways for energy increasing. Cent Eur J Energy Mat. 2006;3(4):73–87.
  • Dey A, Sikder AK, Talawar MB, et al. Towards new directions in oxidizers/energetic fillers for composite propellants: an overview. Cent Eur J Energy Mat. 2015;12:377–399.
  • Axthammer QJ, Krumm B, KlapöTke TM. Synthesis of energetic nitrocarbamates from polynitro alcohols and their potential as high energetic oxidizers. J Org Chem. 2015 June 4;80(12):6329–6335.
  • Vo TT, Zhang J, Parrish DA, et al. New roles for 1, 1-diamino-2, 2-dinitroethene (FOX-7): halogenated FOX-7 and azo-bis (diahaloFOX) as energetic materials and oxidizers. J Am Chem Soc. 2013;135(32):11787–11790.
  • Vo TT, Parrish DA, Shreeve JN. Tetranitroacetimidic acid: A high oxygen oxidizer and potential replacement for ammonium perchlorate. J Am Chem Soc. 2014;136(34):11934–11937.
  • Klapötke TM, Krumm B, Moll R, et al. CHNO based molecules containing 2, 2, 2‐trinitroethoxy moieties as possible high energy dense oxidizers. Z Anorg Allg Chem. 2011;637(14‐15):2103–2110.