3,400
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Nanocomposites containing titanium dioxide for environmental remediation

ORCID Icon
Pages 22-45 | Received 24 Nov 2020, Accepted 11 Jan 2021, Published online: 20 Jan 2021

References

  • Harms, R., Gazquez, G. C., & Walsh, S. (2015). Nanomaterials, Nanofibres and Commercialisation. CMM international, 2015 (November 27).‏
  • Kumar S, Nann T. Shape control of II–VI semiconductor nanomaterials. Small. 2006;2(3):316–329.
  • Yin Y, Talapin D. The chemistry of functional nanomaterials. Chem Soc Rev. 2013;42(7):2484–2487.
  • Khot LR, Sankaran S, Maja JM, et al. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 2012;35:64–70.
  • Liu L, Chen X. Titanium dioxide nanomaterials: self-structural modifications. Chem Rev. 2014;114(19):9890–9918.
  • von Bichowsky F. Titanium white - A new method for its preparation. Ind Eng Chem. 1929;21(11):1061–1063.
  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37–378.
  • Schrauzer GN, Guth TD. Photocatalytic reactions. 1 Photolysis of Water and Photoreduction of Nitrogen on Titanium Dioxide J Am Chem Soc. 1977;99(22):7189–7193.
  • Shimura K, Yoshida H. Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ Sci. 2011;4(7):2467–2481.
  • Chen X, Li C, Graetzel M, et al. Nanomaterials for renewable energy production and storage. Chem Soc Rev. 2012;41:7909–7937.
  • Ahmad S, Nazir A, Hussain T. Photocatalytic degradation of organics by using nanocrystalline titania. J Chem. 2017;1–5. DOI:https://doi.org/10.1155/2017/7408972.
  • Lavand AB, Bhatu MN, Malghe YS. Visible light photocatalytic degradation of malachite green using modified titania. J Mater Res Technol. 2018. In press. DOI:https://doi.org/10.1016/j.jmrt.2017.05.019
  • Payan A, Fattahi M, Roozbehani B. Synthesis, characterization and evaluations of TiO2 nanostructures prepared from different titania precursors for photocatalytic degradation of 4-chlorophenol in aqueous solution. J Environ Health Sci Eng. 2018;16(295):41–54.
  • Rashwan K, Sereda G, Kilin D. Adsorption patterns of caffeic acid on titania: affinity, charge transfer and sunscreen applications. Mol Phys. 2016;114(3–4):498–508.
  • De Clercq R, Dusselier M, Poleunis C, et al. Titania-silica catalysts for lactide production from renewable alkyl lactates: structure–activity relations. ACS Catal. 2018;8(9):8130–8139. .
  • Sorcar S, Hwang Y, Grimes CA. Su-II in.highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO2 reduction into CH4. Mater Today. 2017;20(9):507–515.
  • Julian M, de Souza P, Ciotti L, et al. Preparation of Au/TiO2 catalyst by a liquid-phase reduction method for preferential oxidation ofcarbon monoxide in a hydrogen rich-stream (CO-PROX reaction). Mater Res. 2017;21(2):e20170756.
  • Byranvand MM, Kharat AN, Bazargan MH. Titania nanostructures for dye-sensitized solar cells. Nano-Micro Lett. 2012;4(4):253–266.
  • Islam SZ, Nagpure S, Kim D, et al. Synthesis and catalytic applications of non-metal doped mesoporous titania. Inorganics. 2017;5(1):15. .
  • Reddy BM, Ganesh I, Khan A. Stabilization of nanosized titania-anatase for high temperature catalytic applications. J Mol Catal A Chem. 2004;223(1–2):295–304.
  • Sowmya N, Bykkam S, Rao KV. Synthesis and characterization of ceria-titania (CeO2-TiO2) core-shell nanoparticles for enzymatic bio sensing application. Curr Nanomater. 2016;1(2):132–138.
  • Evdokimova OL, Svensson FG, Agafonov AV, et al. Hybrid drug delivery patches based on spherical cellulose nanocrystals and colloid titania-synthesis and antibacterial properties. Nanomater. 2018;8(4):228–229.
  • Mohamed MS, Torabi A, Paulose M, et al. Anodically grown titania nanotube induced cytotoxicity has genotoxic origins. Sci Rep. 2017;7(1):41844.
  • Le Z. Architectural design of titanium dioxide nanocomposites for high-rate energy storage. Doctoral dissertation UCLA. 2017.
  • Diya’uddeen BH, Wan Mohd Ashri Wan D, Aziz ARA. Treatment technologies for petroleum refinery effluents: A review. Process SafEnviron Prot. 2011;89(2):95–105.
  • Wang X, Zhaodong L, Shi J. Yanhao Yu One-Dimensional Titanium Dioxide Nanomaterials. Nanowires, Nanorods, and Nanobelts, Chemical Reviews. 2014;114(19):9346–9384.
  • Bokhimi, X., Morales, A., Aguilar, M., Toledo-Antonio, J. A., & Pedraza, F., “Local order in titania polymorphs,” International journal of hydrogen energy, 2001, 26(12), 1279-1287.‏
  • Chen X, Mao SS. Titanium dioxide nanomaterials. Synthesis, Properties, Modifications, and Applications, Chemical Reviews. 2007;107(7):2891–2959.
  • Li H, Afanasiev P. On the selective growth of titania polymorphs in acidic aqueous medium. Mater Res Bull. 2011;46(12):2506–2514.
  • Saravanan R., Gracia F., Stephen A., “Basic Principles, Mechanism, and Challenges of Photocatalysis. In: Khan M., Pradhan D., Sohn Y. (eds) Nanocomposites for Visible Light-induced Photocatalysis,” Springer Series on Polymer and Composite Materials. 2017, Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-319-62446-4_2
  • Skinner, D. E., Colombo Jr, D. P., Cavaleri, J. J., & Bowman, R. M., “Femtosecond investigation of electron trapping in semiconductor nanoclusters”, The Journal of Physical Chemistry, 1995, 99(20), 7853-7856.
  • Colombo Jr, D. P., Roussel, K. A., Saeh, J., Skinner, D. E., Cavaleri, J. J., & Bowman, R. M., “Femtosecond study of the intensity dependence of electron-hole dynamics in TiO2 nanoclusters,” Chemical physics letters, 1995, 232(3), 207-214.‏
  • Serpone, N. I. C. K., Lawless, D. A. R. R. E. N., Khairutdinov, R., & Pelizzetti, E., “Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp= 1.0-13.4 nm). Relevance to heterogeneous photocatalysis,” The Journal of Physical Chemistry, 1995, 99(45), 16655-16661.‏
  • Martin ST, Herrmann H, Choi W, et al. Time-resolved microwave conductivity. Part 1.—TiO 2 photoreactivity and size quantization. Soc Faraday Trans. 1994;90(21):3315–3322.
  • Rothenberger G, Moser J, Grätzel M, et al. Am. Chem Soc. 2002;107(26):8054–8059.
  • Grätzel M, Howe RFJ. Phys. Chem. 2002;94:2566–2572.
  • Martin ST, Morrison CL, Hoffmann MR. Hoffmann, “photochemical mechanism of size-quantized vanadium-doped TiO2 particles,”M. R J Phys Chem. 1994;98(51):13695–13704.
  • Yang P, Lu C, Hua N, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater Lett. 2002;57(4):794–801.
  • Yang J, Chen CC, Ji HW, et al. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B. 2005;109(46):21900–21907.
  • Minero C, Mariella G, Maurino V, et al. Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. competitive reactions of phenol and alcohols on a titanium dioxide−fluoride system. Langmuir. 2000;16(23):8964–8972.
  • Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269–270.
  • Khan SUM, Al-Shahry M, Ingler WB Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science. 2002;297(5590):2243–2245.
  • Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett. 2003;32(4):364–365.
  • Yu JC, Yu JG, Ho WK, et al. Effects of F Doping On The Photocatalytic Activity And Microstructures Of Nanocrystalline TiO2 powders. Chem Mater. 2002;14(9):3808–3816.
  • Luo H, Takata T, Lee Y, et al. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem Mater. 2004;16(5):846–849.
  • Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269–270.
  • Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2 Powders. Phys Chem B. 2003;107(23):5483–5486.
  • Vogel R, Hoyer P, Weller H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3 and Bi2 S3 particles as sensitizers for various nanoporous wide-bandgap Semiconductors. Phys Chem. 1994;98(12):3183–3188.
  • Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc. 2006;128(7):2385–2393.
  • Grätzel M. Dye-sensitized solar cells. J Photochem Photobiol, C. 2003;4(2):145–153.
  • Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye sensitized solar cells. J Photochem Photobiol, A. 2004;164(1–3):3–14.
  • Byranvand MM, Kharat AN, Fatholahib L, et al. A review on synthesis of nano-TiO2 via different methods. JNS. 2013;3:1–9.
  • Kretzschmar AL, Manefield M. The role of lipids in activated sludge floc formation. AIMS Environmental Science. 2015;2(2):122–133.
  • Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev. 2007;107(7):2891–2959.
  • Zhu J, Zhang J, Chen F, et al. High activity TiO2 photocatalysts prepared by amodified sol-gel method: characterization and their photocatalytic activity for the degradation of XRG and X-GL. Topics Catal. 2005;35(3–4):261–268.
  • Scholz, G., and E. Kemnitz. “Sol–gel synthesis of metal fluorides: reactivity and mechanisms.” Modern Synthesis Processes and Reactivity of Fluorinated Compounds. Elsevier, 2017. 609-649.‏
  • Hintze C, Morita K, Riedel R, et al. Facile sol–gel synthesis of reduced graphene oxide/silica nanocomposites. J Eur Ceram Soc. 2016;36(12):2923–2930. Issue. .
  • Zaki MI, Mekhemer,N GAH, Fouad E, et al. Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO2 nanoparticles. Mater Res Bull. 2010;45(10):1470–1475.
  • Zarzycki J. Past and present of sol-gel science and technology. J Sol Gel Sci Techn. 1997;8(1–3):17–22.
  • Sugimoto T, Okada K, Itoh H. Synthesis of uniform spindle-type titania particles by the gel-sol method. J Colloid Interface Sci. 1997;193(1):140–143.
  • Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 1. Solution chemistry of Ti(OH)(4−n)+ n complexes. J Colloid Interface Sci. 2002;252(2):339–346.
  • Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method. 4. Shape control. J Colloid Interface Sci. 2003;259(1):53–61.
  • Chen W, Gao W. Sol-enhanced electroplating of nanostructured Ni–TiO2 composite coatings—the effects of sol concentration on the mechanical and corrosion properties. Electrochim Acta. 2010;55(22):6865–6871.
  • Zhou X-S, Li L-J, Lin Y-H, et al. Characterization and properties of anatase TiO2 film prepared via colloidal sol method under low temperature. J Electroceram. 2008;21(1–4):795–797.
  • Jun Y-W, Casula MF, Sim J-H, et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J Am Chem Soc. 2003;125(51):15981–15985.
  • Trentler TJ, Denler TE, Bertone JF, et al. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc. 1999;121(7):1613–1614.
  • Koo B, Park J, Kim Y, et al. Simultaneous phase- and size-controlled synthesis of TiO2 nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors. J Phys Chem B. 2006;110(48):24318–24323.
  • Murat A, Meltem A, Funda S, et al. A novel approach to the hydrothermal synthesis of anatase titania nanoparticles and the photocatalytic degradation of rhodamine B. Turk J Chem. 2006;30:333–343.
  • Ovenstone J. Preparation of novel titania photocatalysts with high activity. J Mater Sci. 2001;36(6):1325–1329.
  • Li XL, Peng Q, Yi JX, et al. Near monodisperse TiO2 nanoparticles and nanorods. Chem sEur J. 2006;12:2383–2391.
  • Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature. 2005;437(7055):121–124.
  • Wen B, Liu C, Liu Y. Solvothermal synthesis of ultralong single-crystalline TiO2nanowires. New J Chem. 2005;29:969–971.
  • Wen B, Liu C, Liu Y. Depositional characteristics of metal coating on single-crystal TiO2 nanowires. J Phys Chem B. 2005;109(25):12372–12375.
  • Yang SW, Gao L. Fabrication and shape-evolution of nanostructured TiO2 via a sol–solvothermal process based on benzene–water interfaces. Mater Chem Phys. 2006;99(2–3):437.
  • Bian Z, Zhu J, Wang J, et al. Multitemplates for the hierarchical synthesis of diverse inorganic materials. J Am Chem Soc. 2012;134(4):2325–2331.
  • Wu JJ, Yu CC. Aligned TiO2 nanorods and nanowalls. J Phys Chem B. 2004;108(11):3377–3379.
  • Park DG, Burlitch JM. Nanoparticles of anatase by electrostatic spraying of an alkoxide solution. Chem Mater. 1992;4(3):500–502.
  • Ishigaki T, Oh SM, Park DW. Titanium dioxide nano-particles prepared through thermal plasma oxidation of titanium nitride. Trans Mater Res Soc Jpn. 2004;29:3415.
  • Li YL, Ishigaki T. Synthesis and structural characterization of plasma oxidation of titanium carbide. Thin Solid Films. 2002;407(1–2):79–85.
  • Nedeljkovic JM, Saponjic ZV, Rakocevic Z, et al. Ultrasonic spray pyrolysis of TiO2 nanoparticles. Nanostruct Mater. 1997;9(1–8):125–128.
  • Grujic-Brojcin M, Scepanovic MJ, Dohcevic-Mitrovic ZD, et al. Infrared study of laser synthesized anatase TiO2 nanopowders. J Phys D. 2005;38(9):1415.
  • Oh CW, Seong GDL, Park S, et al. “Synthesis of nanosized TiO2 particles via ultrasonic irradiation and their photocatalytic activity. React Kinet Catal Lett. 2005;85(2):261–268.
  • Wu JM, Zhang TW, Zeng YW, et al. Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity. Langmuir. 2005;21(15):6995–7002.
  • Wu JM. Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. J Cryst Growth. 2004;269(2–4):347.
  • Wu JM, Hayakawa S, Tsuru K, et al. Porous titania films prepared from interactions of titanium with hydrogen peroxide solution. Scripta Mater. 2002;46(1):101–106.
  • Peng X, Chen A. Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. J Mater Chem. 2004;14(16):2542.
  • Suslick, Kenneth S. “Ultrasound in synthesis.” Modern Synthetic Methods 1986. Springer, Berlin, Heidelberg, 1986. 1-60.‏
  • Jokanovic V, Spasic AM, Uskokovic D. Designing of nanostructured hollow TiO2 spheres obtained by ultrasonic spray pyrolysis.. J Colloid Interface Sci. 2004;278(2):342–352.
  • Li, J.R., Tang, Z.L., Zhang, Z.T., “Converting Industrial TiO2 into Titanate Nanotubes by Simple Sonochemical-Hydrothermal Processing.” Key Engineering Materials, vol. 280–283, Trans Tech Publications, Ltd., Feb. 2007, pp. 651–654. Crossref, doi:https://doi.org/10.4028/www.scientific.net/kem.280-283.651.
  • Meskin, P. E., Ivanov, V. K., Barantchikov, A. E., Churagulov, B. R., & Tretyakov, Y. D., “Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders,” Ultrasonics sonochemistry, 2006, 13(1), 47-53.‏
  • Xia H, Wang Q. Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem Mater. 2002;14(5):2158–2165.
  • Yu JC, Yu J, Zhang L, & Ho, W. Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders. J Photochem Photobiol, A. 2002;148(1–3):263–271.
  • Huang W, Tang X, Wang Y, et al. Selective synthesis of anatase and rutilevia ultrasound irradiation. A Chem Commun. 2000;15:1415–1416. DOI:https://doi.org/10.1039/b003349i
  • Yu JC, Yu J, Ho W, & Zhang, L. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem Commun. 2001;19:1942–1943. DOI:https://doi.org/10.1039/b105471f
  • Zhu Y, Li H, Koltypin Y, et al. Sonochemical synthesis of titania whiskers and nanotubes. A Chem Commun. 2001;24:2616–2617. DOI:https://doi.org/10.1039/b108968b
  • Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(7):2891–2959.
  • Corradi AB, Bondioli F, Focher B, et al. Conventional and Microwave-hydrothermal synthesis of TiO2 Nanopowders. J Am Ceram Soc. 2005;88(9):2639–2641.
  • Wu X, Jiang QZ, Ma ZF, et al. Synthesis of titania nanotubes by microwave irradiation. Solid State Commun. 2005;136(9–10):513–517.
  • Gressel-Michel E, Chaumont D, Stuerga D. From a microwave flash-synthesized TiO2 colloidal suspension to TiO2 thin films. J Colloid Interface Sci. 2005;285(2):674–679.
  • Meire M, Verbruggen SW, Lenaerts S, et al. Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity. J Mater Sci. 2016;51(21):9822–9829. .
  • Jaafar, N. F., Ahmad, Z. H., Jusoh, N. W. C., & Nagao, Y. (2019, February). X-ray diffraction and spectroscopic studies of microwave synthesized mesoporous titania nanoparticles for photodegradation of 2-chlorophenol under visible light. In AIP Conference Proceedings (Vol. 2068, No. 1, p. 020081). AIP Publishing LLC.‏ https://doi.org/https://doi.org/10.1063/1.5089380
  • Akram M, Taha, A., Butt, F. K., Awan, A. S., & Hussain, R. “Effect of reactant concentration on the physicochemical properties of nanosized titania synthesized by microwave-assisted continuous flow method,” J Mater Sci. 2017;28(14):10449–10456.
  • Bregadiolli BA, Fernandes SL, Carlos Frederico de Oliveira G. Easy and fast preparation of TiO2-based nanostructures using microwave assisted hydrothermal synthesis. Mater Res. 2017;20(4):912–919.
  • Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Appl Catal B Environ. 2010;99(1–2):27–42.
  • Malato S, Fernández-Ibáñez P, Maldonado MI, et al. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. CatalToday. 2009;147(1):1–59.
  • Sergi Garcia-Segura JD, Ocon MNC, Chong MN. Electrochemical oxidation remediation of real wastewater effluents — A review. Process SafEnviron Prot. 2018;113:48–67.
  • Alvaro M, Bogdan Cojocaru AA, Ismail NP, et al. Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Appl Catal B Environ. 2010;99(1–2):191–197.
  • Hamaloğlu KÖ, Sağ E, Tuncel A. Bare, gold and silver nanoparticle decorated, monodisperse-porous titania microbeads for photocatalytic dye degradation in a newly constructed microfluidic, photocatalytic packed-bed reactor. J Photochem Photobiol A. 2017;332:60–65.
  • Mohseni-Salehi MS, Taheri-Nassaj E, Hosseini-Zori M. Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. J Photochem Photobiol A Chem. 2018;356:57–70.
  • Nada AA, Tantawy HR, Elsayed MA, et al. Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution. Solid State Sci. 2018;78:116–125.
  • Avilés-García O, Espino-Valencia J, Romero-Romero R, et al. Enhanced photocatalytic activity of titania by co-doping with Mo and W. Catalysts. 2018;8(12):631.
  • Zahoor M, Arshad A, Khan Y, et al. Enhanced photocatalytic performance of CeO2–TiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent. Appl Nanosci. 2018;8(5):1091–1099. .
  • Thiripuranthagan S, Rupa V. Detoxification of carcinogenic dyes by noble metal (Ag, Au, Pt) Impregnated Titania Photocatalysts. In: Gold nanoparticles-reaching new heights. intechOpen. 2018. DOI: https://doi.org/10.5772/intechopen.80467
  • Ramamoorthy V, Kannan K, Thiripuranthagan S. Photocatalytic degradation of textile reactive dyes—a comparative study using nano silver decorated titania-silica composite photocatalysts. J Nanosci Nanotechnol. 2018;18(4):2921–2930.
  • Murcia JJ, Cely ÁC, Rojas HA, et al. Fluorinated and platinized titania as effective materials in the photocatalytic treatment of dyestuffs and stained wastewater coming from handicrafts factories. Catalysts. 2019;9(2):179.
  • Arifin M, Karim K, Abdullah H, et al. Synthesis of titania doped copper ferrite photocatalyst and its photoactivity towards methylene blue degradation under visible light irradiation. Bulletin of Chemical Reaction Engineering & Catalysis. 2019;14(1):219–227.
  • Haitao L, Gao Q, Wang H, et al. Transition-metal ion-doped flower-like titania nanospheres as nonlight-driven catalysts for organic dye degradation with enhanced performances. ACS Omega. 2018;3(12):17724–17731.
  • Ramya R, Krishnan PS, Neelaveni M, et al. Enhanced visible light activity of pr–tio2 nanocatalyst in the degradation of dyes: effect of Pr doping and TiO2 morphology. J Nanosci Nanotechnol. 2019;19(7):3971–3981.
  • Szymański K, Morawski AW, Mozia S. Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid UV/H2O2 – ultrafiltration system. Chem Eng Process. 2018;125:318–324.
  • Madadi S, Biriaei R, Sohrabi M, et al. Photodegradation of 4-nitrophenol using an impinging streams photoreactor coupled with a membrane. Chem Eng Process. 2016;99:1–9.
  • Sheydaei M, Zangouei M, Vatanpour V. Coupling visible light sono–photocatalysis and sono–enhanced ultrafiltration processes for continuous flow degradation of dyestuff using N–doped titania nanoparticles. Chemical Engineering and Processing–Process Intensification. 2019;143:107631.
  • Ramacharyulu PVRK, Prasad GK. “Enhanced photocatalytic activity of mesoporous nano titania decorated with zinc phthalocyanine” Indian Journal of Chemistry -Section A (IJC-A), 2018;57A(1):18–25.
  • Mehrabi M, Javanbakht V. Photocatalytic degradation of cationic and anionic dyes by a novel nanophotocatalyst of TiO2/ZnTiO3/αFe2O3 by ultraviolet light irradiation. J Mater Sci: Mater Electron. 2018;29:9908–9919.
  • Chun H, Yizhong W, Hongxiao T. Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO2/SiO2 photocatalyst. Appl Catal B. 2001;35(2):95–105.
  • Huang H, Liu G, Zhan Y, et al. Photocatalytic oxidation of gaseous benzene under VUV irradiation over TiO2/zeolites catalysts. Catal Today. 2017;281:649–655.
  • Mishra A, Mehta A, Sharma M, et al. Enhanced heterogeneous photodegradation of VOC and dye using microwave synthesized TiO2/Clay nanocomposites: a comparison study ofdifferent type of clays. J Alloys Compd. 2017;694:574–580.
  • Elías VR, Ferrero GO, Oliveira RG, et al. Eimer, Improved stability in SBA-15 mesoporous materials as catalysts for photodegradation processes. Microporous Mesoporous Mater. 2016;236:218–227.
  • Hussain M, Akhter P, Saracco G, et al. Nanostructured TiO2/KIT-6 catalysts for improved photocatalytic reduction of CO2 to tunable energy products. Appl Catal B. 2015;170–171:53–65.
  • Zarrabi M, Entezari MH. Modification of C/TiO2@MCM- 41 with nickel nanoparticles for photocatalytic desulfurization enhancement of a diesel fuel model under visible light. J Colloid Interface Sci. 2015;457:353–359.
  • Liou T, Hung L, Liu C, et al. Direct synthesis of nano titania on highly-ordered mesoporous SBA-15 framework for enhancing adsorption and photocatalytic activity. J Porous Mater. 2018;25(5):1337–1347. .
  • Xuan J, Boissière O, Zhao Y, et al. Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir. 2012;28(47):16463–16468.
  • Durgadevi G, Samikannu A, Chandran M, et al. Synthesis and characterization of CdS nanoparticle anchored silica-titania mixed oxide mesoporous particles: efficient photocatalyst for discoloration of textile effluent. Int J Nano Dimension. 2019;10(3):272–280.
  • Azeez F, Al-Hetlani E, Arafa M, et al. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep. 2018;8(1):7104. .
  • Murcia Mesa JJ, Ávila Martínez EG, Rojas Sarmiento HA, et al. Powder and nanotubes titania modified by dye sensitization as photocatalysts for the organic pollutants elimination.. Nanomaterials. 2019;9(4):517.
  • Tang Y. Enhanced photocatalytic performance of tio2 by β-cyclodextrin for the degradation of organic dyes. Journal of Inequalities and Applications. 2018, 3(3):254–264.
  • Masilompane TM, Chaukura N, Mishra SB, et al. Chitosan-lignin-titania nanocomposites for the removal of brilliant black dye from aqueous solution. Int J Biol Macromol. 2018;120(Pt B):1659–1666.
  • Salama A, Mohamed A, Aboamera NM, et al. Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation. Appl Nanosci. 2018;8(1–2):155–161. .
  • Saikumari N, Preethi T, Abarna B, et al. Ecofriendly, green tea extract directed sol–gel synthesis of nano titania for photocatalytic application. J Mater Sci: Mater Electron. 2019, 30(7):6820–6831.
  • Ali S, Granbohm H, Lahtinen J, et al. Titania nanotubes prepared by rapid breakdown anodization for photocatalytic decolorization of organic dyes under UV and natural solar light. Nanoscale Res Lett. 2018;13(1):179 .
  • Belhouchet N, Hamdi B, Chenchouni H, et al. Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites. J Photochem Photobiol A: Chem. 2019;372:196–205.
  • Tsiampalis A, Frontistis Z, Binas V, et al. Degradation of sulfamethoxazole using iron-doped titania and simulated solar radiation. Catalysts. 2019;9(7):612.
  • Moosavi F, Cheng C, Gheinani T, et al. Photocatalytic destruction of amoxicillin in a pilot sunlight reactor with supported titania nano-photocatalyst. Chemical Engineering Transactions, AIDIC. 2019;73:175–180.
  • Nezar S, Laoufi NA. Electron acceptors effect on photocatalytic degradation of metformin under sunlight irradiation. Sol Energy. 2018;164:267–275.
  • Rahimdokht M, Pajootan E, Ranjbar‐Mohammadi M. Titania/gum tragacanth nanohydrogel for methylene blue dye removal from textile wastewater using response surface methodology. Polym Int. 2019;68(1):134–140.
  • Ríos-Gómez J, Ferrer-Monteagudo B, López-Lorente A, et al. Efficient combined sorption/photobleaching of dyes promoted by cellulose/titania-based nanocomposite films. J Clean Prod. 2018;194:167–173.
  • Diamantopoulou A, Sakellis E, Romanos GE, et al. Titania photonic crystal photocatalysts functionalized by graphene oxide nanocolloids. Appl Catal B Environ. 2019;240:277–290.
  • Shakeel M, Baoshan L, Yasin G, et al. In situ fabrication of foamed titania carbon nitride nanocomposite and its synergetic visible-light photocatalytic performance. Ind Eng Chem Res. 2018;57(24):8152–8159.
  • Oblak R, Kete M, Lavrencic Stangar U, et al. Alternative support materials for titania photocatalyst towards degradation of organic pollutants. Journal of Water Process Engineering. 2018;23:142–150.
  • Zhang T, Elma M, Xie F, et al. Rapid thermally processed hierarchical titania-based hollow fibres with tunable physicochemical and photocatalytic properties. Sep Purif Technol. 2018;206:99–106.
  • Chen X, Liu L, Peter YY, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 2011;331(6018):746–750.
  • Zhu Q, Peng Y, Lin L, et al. Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. J Mater Chem A. 2014;2(12):4429–4437.
  • Babu B, Ullattil SG, Prasannachandran R, et al. Ti3+induced brown TiO2 nanotubes for high performance sodium-ion hybrid capacitors. ACS Sustainable Chem Eng. 2018;6(4):5401–5412.
  • Liu G, Yin LC, Wang J, et al. A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci. 2012;5(11):9603–9610.
  • Ullattil SG, Ramakrishnan RM. Defect-rich brown TiO2–x porous flower aggregates: selective photocatalytic reversibility for organic dye degradation. ACS Appl Nano Mater. 2018;1(8):4045–4052.
  • Liu X, Cheng H, Guo Z, et al. Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation. ACS Appl Mater Interfaces. 2018;10(46):39661–39669.
  • Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol. 2018;107:1278–1293. [ Part A].
  • Shi H, Magaye R, Castranova V, et al. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;10(1):15. .
  • Lim JH, Sisco P, Mudalige TK, et al. Detection and characterization of SiO2 and TiO2 nanostructures in dietary supplements. J Agric Food Chem. 2015;63(12):3144–3152.
  • Rai M, Ribeiro C, Mattoso L, et al. Nanotechnologies in food and agriculture. Switzerland: Springer International Publishing; 2015. p. 352.
  • Heringa MB, Geraets L, van Eijkeren JC, et al. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology. 2016;11:1–11.
  • Jovanovič B, Cvetkovič VJ, Mitrovič TL. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes. Chemosphere. 2016;144:43–49.
  • Sadeghi R, Rodriquez RJ, Yao Y, et al. Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annu Rev Food Sci Technol. 2017;8(1):467–492.
  • Rhim JW, Park HM, Ha CS. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38(10–11):1629–1652.
  • Sharma VK. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—A Review. J Environ Sci Health. 2009;44(14):1485–1495. Part A. .
  • Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species on dependence on contaminants. Toxicol Lett. 2007;168(1):58–74.
  • Tinkle SS, Antonini JM, Rich BA, et al. Skin: as a route of exposure and sensitization of chronic beryllium disease. Environ Health Perspec. 2003;111(9):1202–1208.
  • Tsujii JS, Mayland AD, Howard PC, et al. Research stragies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci. 2006;89(1):42–50.
  • Afaq F, Abidi P, Matin R, et al. Cytotoxicty, pro-oxidant effects and antitoxidant depletion in rat lung alveolar macrophage exposed to Ultrafine titanium dioxide. J Appl Toxicol. 1998;18(5):307–312.
  • Peters K, Unger RE, Kirkpatrick CJ, et al. Effects of nanoscale particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med. 2004;15(4):321–325.
  • Limbach LK, Wick P, Manser P, et al. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalyst activity on oxidative stress. Environ Sci Technol. 2007;41(11):4158–4163.
  • Long TC, Saleh N, Tilton RD, et al. Titanium Dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol. 2006;40(14):4346–4352.
  • Montellier C, Tran L, MacNee W, et al. The pro-inflammatory effects of low-toxicity surface area particles, on epithelial cells in vitro: the role of low-solubility particles, nanoparticles and fine. Occup Environ Med. 2007;64(9):609–615.
  • Simm A, Bromme H. Reactive oxygen species (ROS) and aging: do we need them—can we measure them-should we block them? Signal Transduct. 2005;3(3):115–125.
  • Warmer WG, Yin JJ, Wei RR. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Biol Med. 1997;23(6):851–858.