1,687
Views
2
CrossRef citations to date
0
Altmetric
Full Length Article

New type of borneol-based fluorine-free superhydrophobic antibacterial polymeric coating

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 147-157 | Received 08 Mar 2021, Accepted 28 Apr 2021, Published online: 07 May 2021

References

  • Luo L. Antibacterial adhesion of borneol-based polymer via surface chiral stereochemistry. ACS Appl Mater Interfaces. 2014;6(21):19371–19377.
  • Zhang Y, Yu Q, Huang H, et al. A surface decorated with diblock copolymer for biomolecular conjugation. Soft Matter. 2010;6(12):2616.
  • Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater. 2010;22(9):920.
  • Onaizi SA, Leong, Chen SSJ. Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv. 2011;29(1):67.
  • Jiao Y, Niu L-N, Ma S, et al. Quaternary ammonium-based biomedical materials: state-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci. 2017;71:53.
  • Mi G, Shi D, Wang M, et al. Reducingbacterial infectio ns and biofilm forma- tion using nanoparticles and nanostructured antibacterial surfaces webster. Adv Healthcare Mater. 2018;7(13):1800103.
  • Banerjee I, Pangule RC, Kane RS. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater. 2011;23:690–718.
  • Glinel K, Thebault P, Humblot V, et al. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012;8(5):1670–1684.
  • Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS Bull. 2011;36(5):347–355.
  • Wong GCL, O’Toole GA. All together now: Integrating biofilm research across disciplines. MRS Bull. 2011;36(5):339–342.
  • Neu TR. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev. 1996;60(1):151–166.
  • Haug BE, Strom MB, Svendsen JSM. The medicinal chemistry of short lactoferricin-based antibacterial peptides. Curr Med Chem. 2007;14(1):1–18.
  • Rai M, Yadav A, Gade A. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Biotechnol Adv. 2009;27(1):76.
  • Lu L, Dai G, Yan L, et al. In-situ low-temperature sol-gel growth of nano-cerium oxide ternary composite films for ultraviolet blocking. Optical Material. 2020;101:109724.
  • Salditt T, Li C, Spaar A. Structure of antimicrobial peptides and lipid membranes probed by interface-sensitive X-ray scattering. Biochim Biophys Acta. 2006;1758(9):1483–1498.
  • Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003;10(10):813–829.
  • Wang X, Gan H, Zhang MX, et al. Modulating cell behaviors on chiral polymer brush films with different hydrophobic side groups. Langmuir. 2012;28(5):2791–2798.
  • Wang X, Gan H, Sun TL, et al. Stereochemistry triggered differential cell behaviours on chiral polymer surfaces. Soft Matter. 2010;6(16):3851–3855.
  • Mai LM, Lin CY, Chen CY, et al. Synergistic effect of bismuth subgallate and borneol, the major components of Sulbogin, on the healing of skin wound. Biomaterials. 2003;24(18):3005–3012.
  • Shi B, Luan D, Wang S, et al. Borneol-grafted cellulose for antifungal adhesion and fungal growth inhibition. RSC Adv. 2015. DOI:https://doi.org/10.1039/C5RA07894F
  • Wu J, Wang C, Mu C, et al. A waterborne polyurethane coating functionalized by isobornyl with enhanced antibacterial adhesion and hydrophobic property. Eur Polym J. 2018;108:498–506.
  • Wang H, Fang J, Cheng T, et al. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity, Chem. Commun. 2008;877. DOI:https://doi.org/10.1039/b714352d
  • Nakajima A, Hashimoto K, Watanabe T. Fabrication of superhydrophobic nanostructured surface on aluminum alloy, Monatsh. Chem. 2001;132:31.
  • Furstner R, Barthlott W, Neinhuis C, et al. Fabrication of superhydrophobic surfaces using structured colloids. Langmuir. 2005;21:956.
  • Lin J, Cai Y, Wang X, et al. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale. 2011;3(3):1258.
  • Bhushan B, Jung YC, Koch K. Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir. 2009;25(5):3240.
  • Zhang X, Shi F, Niu J, et al. Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly(tetrafluoroethylene) surfaces. Mater Chem. 2008;18(6):621.
  • Ostuni E, Chen CS, Ingber DE, et al. Selective deposition of proteins and cells in arrays of microwells. Langmuir. 2001;17(9):2828.
  • Privett BJ, Youn J, Hong SA, et al. Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir. 2011;27(15):9597.
  • Hu C. Micro-/nanometer rough structure of a superhydrophobic biodegradable coating by electrospraying for initial anti-bioadhesion. Adv Healthcare Mater. 2013;2(10):1314–1321.
  • Jha SK, Mishra VK, Sharma DK, et al. Fluoride 562 in the environment and its metabolism in humans. Rev. 563 Environ. Contam. Toxicol. 2011;211:121–142.
  • DeWitt JC, Shnyra A, Badr MZ, et al. 521 Immunotoxicity of perfluorooctanoic acid and perfluorooctane 522 sulfonate and the role of peroxisome proliferator-activated 523 receptor alpha. Crit Rev Toxicol. 2009;39(1):76–94.