1,388
Views
4
CrossRef citations to date
0
Altmetric
Full Length Article

DFT study on some polythiophenes containing benzo[d]thiazole and benzo[d]oxazole: structure and band gap

ORCID Icon, , , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 274-284 | Received 09 Jul 2021, Accepted 18 Aug 2021, Published online: 06 Sep 2021

References

  • Ikai T, Takayama K, Wada Y, et al. Synthesis of a one-handed helical polythiophene: a new approach using an axially chiral bithiophene with a fixed syn-conformation. Chem Sci. 2019;10(18):4890–4895.
  • Valderrama-García B, Rodríguez-Alba E, Morales-Espinoza E, et al. Synthesis and characterization of novel polythiophenes containing pyrene chromophores: thermal, optical and electrochemical properties. Molecules. 2016;21(2):172.
  • Pina J, Beltran Rodrigues AC, Alnady MMSA, et al. Restricted aggregate formation on tetraphenylethene-substituted polythiophenes. J Phys Chem C. 2020;124(25):13956–13965.
  • Gupta S, Chatterjee S, Zolnierczuk P, et al. Impact of local stiffness on entropy driven microscopic dynamics of polythiophene. Sci Rep. 2020;10(1):9966.
  • Langeveld-Voss BMW, Janssen RAJ, Meijer EW. On the origin of optical activity in polythiophenes. J Mol Struct. 2000;521(1–3):285–301.
  • Kaloni TP, Giesbrecht PK, Schreckenbach G, et al. Polythiophene: from fundamental perspectives to applications. Chem Mater. 2017;29(24):10248–10283.
  • Hu Z, Zhang S, Zhang C, et al. Donor–acceptor units modulate the electronic and photoluminescence characteristics of thiophene oligomers. J Appl Phys. 2019;126(24):245501.
  • Nguyen NL, Tran TTD, Nguyen H, et al. Synthesis of polythiophene containing heterocycle on the side chain: a review. Vietnam J. Chem. 2020;58(1):1–9.
  • Djemoui A, Naouri A, Ouahrani MR, et al. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: anticancer activity in human cells+. J Mol Struct. 2020;1204:127487.
  • Tokárová Z, Maxianová P, Váry T, et al. Thiophene-centered azomethines: structure, photophysical and electronic properties. J Mol Struct. 2020;1204:127492.
  • Vu QT, Tran TTD, Dang TT, et al. Some chalcones derived from thiophene-3-carbaldehyde: synthesis and crystal structures. Acta Cryst. Section E. 2019;75(7):957–963.
  • Esquivel ECC, Rufino VC, Nogueira MHT, et al. Synthesis and characterization of 1,3,5-triarylpyrazol-4-ols and 3,5-diarylisoxazol-4-ols from chalcones and theoretical studies of the stability of pyrazol-4-ol toward acid dehydration. J Mol Struct. 2020;1204:127536.
  • Levesque I, Bazinet P, Roovers J. Optical properties and dual electrical and ionic conductivity in Poly(3-methylhexa(oxyethylene)oxy-4-methylthiophene). Macromolecules. 2000;33(8):2952.
  • Ming S, Youjun H, Kunlun H, et al. A water-soluble polythiophene for organic field-effect transistors. Polym Chem. 2013;4(20):5270–5274.
  • Pei J, Yu WL, Ni J, et al. Thiophene-based conjugated polymers for light-emitting diodes:  effect of aryl groups on photoluminescence efficiency and redox behavior. Macromolecule. 2001;34(21):7241.
  • Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources. 2011;196(1):1–12.
  • Ghaitaoui T, Ali B, Sahli Y, et al. Realization and characterization of p-typed polythiophene based organic photovoltaic cells. Journal of Nano- and Electronic Physics. 2018;10(1):01008.
  • Nabasmita M, Radhakanta G, Arun Nandi K. Optoelectronic properties of self-assembled nanostructures of polymer functionalized polythiophene and graphene. Langmuir. 2018;34(26):7585–7597.
  • Borrelli DC, Lee S, Gleason KK. Optoelectronic properties of polythiophene thin films and organic TFTs fabricated by oxidative chemical vapor deposition. Journal of Materials Chemistry C. 2014;2(35):7223–7231.
  • Sandip D, Dhruba PC, Radhakanta G, et al. Water soluble polythiophenes: preparation and applications. RSC Adv. 2015;5(26):20160–20177.
  • Maiti J, Pokhrel B, Boruah R, et al. Polythiophene based fluorescence sensors for acids and metal ions. Sens Actuators B Chem. 2009;141(2):447–451.
  • Wang F, Li M, Wang B, et al. Synthesis and characterization of water-soluble polythiophene derivatives for cell imaging. Sci Rep. 2015;5(1):7617.
  • Aldo VA, Gerardo ZG, Edgar AO, et al. Luminescent polythiophenes-containing porphyrin units: synthesis, characterization, and optical properties. Designed Monomers & Polymers. 2014;17(1):78–88.
  • Kambiz S, Jeong-Yeol Y, Jongchul S, et al. Chromogenic polymers and their packaging applications: a review. Polymer Rev. 2020;60(3):442–492.
  • Elbing M, Garcia A, Urban S, et al. In Situ conjugated polyelectrolyte formation. Macromolecules. 2008;41(23):9146–9155.
  • Aiello S, Wells G, Stone EL, et al. Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agent 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648). J Med Chem. 2008;51(16):5135–5139.
  • Cho Y, Ioerger TR, Sacchettini JC. Discovery of novel nitrobenzothiazole inhibitors for mycobacterium tuberculosis ATP phosphoribosyl transferase (HisG) through virtual screening. J Med Chem. 2008;51(19):5984–5992.
  • Radhakrishnan S, Parthasarathi R, Subramanian V, et al. Structure and properties of polythiophene containing hetero aromatic side chains. Comput Mater Sci. 2006;37(3):318–322.
  • Radhakrishnan S, Somanathan N. Poly(thiophenes) functionalised with thiazole heterocycles as electroluminescent polymers. J Mater Chem. 2006;16(29):2990–3000.
  • Radhakrishnan S, Somanathan N, Thelakkat M. Thermal degradation studies of polythiophenes containing hetero aromatic side chains. Int J Thermophys. 2009;30(3):1074–1108.
  • Esashika K, Yoshizawa-Fujita M, Takeoka Y, et al. Synthesis and optical properties of poly(thiophene-fluorene) copolymers with benzothiazole moiety. Synth Met. 2009;159(21–22):2184–2187.
  • Nguyen NL, Vu QT, Duong QH, et al. Green synthesis and crystal structure of 3-(benzo-thia-zol-2-yl)thio-phene, Acta crystallographica. Section E, Crystallographic communications. 2017;73(11):1647–1651.
  • Radhakrishnan S, Parthasarathi R, Subramanian V, et al. Quantum chemical studies on polythiophenes containing heterocyclic substituents: effect of structure on the band gap. J Chem Phys. 2005;123(16):164905.
  • Thaneshwor PK, Georg S, Michael SF. Band gap modulation in polythiophene and polypyrrole-based systems. Sci Rep. 2016;6(1):36554.
  • Arnold CA, Wilfredo CC, Rolando VB, et al. AB initio and density functional studies of polythiophene energy band gap. NECTEC Technical Journal. 2001;9:215–218.
  • Brocks G. Density functional study of polythiophene derivatives. J Phys Chem. 1996;100(43):17327–17333.
  • Si MB, Guillermo SM, Mohamed H, et al. DFT study of polythiophene energy band gap and substitution effects. J Chem. 2015;9:12. Article ID 296386
  • Ali SR, Mehri E, Etesam G, et al. The polythiophene molecular segment as a sensor model for H2O, HCN, NH3, SO3, and H2S: a density functional theory study. J Mol Model. 2016;22(6):127. 8
  • Anusuya S, Bishwajit G. A DFT study to probe homo-conjugated norbornylogous bridged spacers in dye-sensitized solar cells: an approach to suppressing agglomeration of dye molecules. RSC Adv. 2020;10(26):15307–15319.
  • Nguyen NH, Ngo TC, Hoang VH, et al. Electronic properties of the polypyrrole-dopant anions <sub>ClO4 − and <sub>MoO42−: a density functional theory study. J Mol Model. 2017;23(12):336.
  • Muhammad AA, Shaikh M, Fatma K, et al. Synthesis and characterization of poly(3-hexylthiophene): improvement of regioregularity and energy band gap. RSC Adv. 2018;8(15):8319–8328.
  • Vu QT, Tran TTD, Nguyen TC, et al. DFT prediction of factors affecting the structural characteristics, the transition temperature and the electronic density of some new conjugated polymers. Polymers. 2020;12(6):1207.
  • Rittmeyer SP, Gro A. Structural and electronic properties of oligo- and polythiophenes modified by substituents, Beilstein J. Nanotechnol 2012;3:909–919.
  • Banjo S, Ayobami OO, Ajibade AI. Structural and electronic properties of 4H-cyclopenta[2,1-b,3;4-b′]dithiophene S-oxide (BTO) derivatives with an S, S=O, O, SiH2, or BH2 bridge: semi-empirical and DFT study. J Mol Model. 2011;18(6):2755–2760.
  • Lo PK, Lau KC. High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, Furan, Pyrrole, 1,3-Cyclopentadiene, and Borole, C4H4X/C4H4X+(X = S, O, NH, CH2, and BH). J Phys Chem A. 2011;115(5):932–939.
  • Barlow S, Odom SA, Lancaster K, et al. Electronic and optical properties of 4H-Cyclopenta[2,1-b:3,4-b′]bithiophene derivatives and their 4-Heteroatom-substituted analogues: a joint theoretical and experimental comparison. J Phys Chem A. 2010;114(45):14397–14407.
  • Kien PH, Lan MT, Dung NT, et al. Annealing study of amorphous bulk and nanoparticle iron using molecular dynamics simulation. Int J Modern Phys B. 2014;28(23):1450155. 17
  • Trong DN, Chinh CN, The TN, et al. Factors on the magnetic properties of the iron nanoparticles by classical heisenberg model. Physica B. 2018;532:144–148.
  • Nguyen-Trong D, Nguyen-Tri P. Understanding the heterogeneous kinetics of Al nanoparticles by simulations method. J Mol Struct. 2020;1218(9):128498.
  • Quoc TT, Trong DN. Molecular dynamics factors affecting on the structure, phase transition of Al bulk. Phys B Condens Matter. 2019;570:116–121.
  • Quoc TT, Trong DN, tefan S¸, et al. Study on the influence of factors on the structure and mechanical properties of amorphous aluminium by molecular dynamics method. Adv Mater Sci Eng. 2021;2021(10):5564644.
  • Nguyen TD, Nguyen CC, Hung Tran V. Molecular dynamics study of microscopic structures, phase transitions and dynamic crystallization in Ni nanoparticles. RSC Adv. 2017;7(41):25406–25413.
  • NguyenTrong D. Z-AXIS deformation method to investigate the influence of system size, structure phase transition on mechanical properties of bulk nickel. Mater Chem Phys. 2020;252(6):123275.
  • Dang Thi Minh H, Coman G, Nguyen Quang H, et al. Influence of heating rate, temperature, pressure on the structure, and phase transition of amorphous Ni material: a molecular dynamics study. Heliyon. 2020;6(11):e05548.
  • Trong DN, Chinh CN, Quoc VD, and Tuan Tran Quoc. Study the effects of factors on the structure and phase transition of bulk Ag by molecular dynamics method. International Journal of Computational Materials Science and Engineering. 11. 2020;9(3):2050016.
  • Nguyen-Trong D, Nguyen-Tri P. Factors affecting the structure, phase transition and crystallization process of AlNi nanoparticles. J Alloys Compd. 2020;812(8):152133.
  • Nguyen-Trong D, Nguyen-Tri P. Molecular dynamic study on factors influencing the structure, phase transition and crystallization process of NiCu6912 nanoparticle. Mater Chem Phys. 2020;250(6):123075.
  • Tuan TQ, Dung NT. Effect of heating rate, impurity concentration of Cu, atomic number, temperatures, time annealing temperature on the structure, crystallization temperature and crystallization process of Ni1-xCux bulk; x = 0.1, 0.3, 0.5, 0.7”. Int J Modern Phys B. 2018;32(26):1830009. 15
  • Nguyen-Trong D, Pham-Huu K, Nguyen-Tri P. Simulation on the factors affecting the crystallization process of FeNi alloy by molecular dynamics. ACS Omega. 2019;4(11):14605–14612.
  • Trong Dung N. Influence of impurity concentration, atomic number, temperature and tempering time on microstructure and phase transformation of Ni1−xFex (x= 0.1, 0.3, 0.5) nanoparticles. Mod Phys Lett B. 2018;32(18):1850204. 14
  • Van Cao L, Van Duong Q, Nguyen Trong D. Ab Initio Calculations on the structural and electronic properties of AgAu Alloys. ACS Omega. 2020;5(48):31391–31397.
  • Trong DN, Long VC, Ţălu S. The structure and crystal-lizing process of NiAu alloy: a molecular dynamics simulation method. J Composites Sci. 2021;5(1):1–14.
  • Quoc TV, La Trieu D, Van Duong Q, et al. Effect of doped H, Br, Cu, Kr, Ge, As and Fe on structural features and bandgap of poly C13H8OS-X: a DFT calculation. Des Monomers Polym. 2021;24(1):53–62.
  • Arjunan V, Thirunarayanan S, Durga DG, et al. Substituent influence on the structural, vibrational and electronic properties of 2,5-dihydrothiophene-1,1-dioxide by experimental and DFT methods. Spectrochim Acta A Mol Biomol Spectrosc. 2015;150:641–651.
  • Yılmaz ZT, Yasin Odabaşoğlu H, Şenel P, et al. A novel 3-((5-methylpyridin-2-yl)amino)isobenzofuran-1(3H)-one: molecular structure describe, X-ray diffractions and DFT calculations, antioxidant activity, DNA binding and molecular docking studies. J Mol Struct. 2020;1205:127585.
  • Prabavathi N, Senthil NN, Venkatram RB. Molecular structure, vibrational spectra, natural bond orbital and thermodynamic analysis of 3,6-dichloro-4-methylpyridazine and 3,6-dichloropyridazine-4-carboxylic acid by DFT approach. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136:1134–1148.
  • Kantchev EAB, Norsten TB, Tan MLY, et al. Thiophene-containing pechmann dyes and related compounds: synthesis, and experimental and DFT characterisation. Chem A Eur J. 2011;18(2):695–708.
  • Thaneshwor PK, Georg S, Michael SF. Band gap modulation in polythiophene and polypyrrole-based systems. Sci Rep. 2016;6(1):36554.
  • Fréchette M, Belletete M, Bergeron J-Y, et al. Monomer reactivity vs regioregularity in polythiophene derivatives: a joint synthetic and theoretical investigation. Synth Met. 1997;84(1–3):223–224.
  • Sun H, Autschbach J. Electronic energy gaps for π-conjugated oligomers and polymers calculated with density functional theory. J Chem Theory Comput. 2014;10(3):1035–1047.
  • Hussain M, Arshad N, Ujan R, et al. Synthesis, structure elucidation and surface analysis of a new single crystal N-((2-(benzo [4,5]imidazo [1,2-c]quinazolin-6-yl)phenyl)carbamothioyl)heptanamide: theoretical and experimental DNA binding studies. J Mol Struct. 2020;1205:127496.
  • Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys. 1990;92(1):508–517.
  • Delley B. From molecules to solids with the DMol3 approach. J Chem Phys. 2000;113(18):7756–7764.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.
  • Tsuzuki S, Lüthi HP. Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: assessing the PW91 model. J Chem Phys. 2001;114(9):3949.
  • Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45(23):13244–13249.
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–5192.