940
Views
1
CrossRef citations to date
0
Altmetric
Full Length Article

Low dielectric resins derived from hyperbranched carbosilane oligmers functionalized by benzocyclobutene groups

, , ORCID Icon, , , , , & show all
Pages 362-370 | Received 23 Jul 2021, Accepted 03 Nov 2021, Published online: 09 Dec 2021

References

  • Shamiryan D, Abell T, Iacopi F, et al. Low-k dielectric materials[J]. Mater Today. 2004;7(1):34–39.
  • Zhang Y, Zhao C, Jie L, et al. Preparation and characterization of ultralow dielectric and fibrous epoxy thermoset cured with poly(aryleneetherketone) containing phenolic hydroxyl groups[J]. Eur Polym J. 2018;109:110–116.
  • Wang CS, Leu TS. Synthesis and characterization of polyimides containing naphthalene pendant group and flexible ether linkages[J]. Polymer. 2000;41(10):3581–3591.
  • Kim S, Wang X, Ando S, et al. Low dielectric and thermally stable hybrid ternary composites of hyperbranched and linear polyimides with SiO2[J]. RSC Adv. 2014;4(52):27267–27276.
  • Zhao EH, Tang AB. Synthesis of low dielectric constant benzoxazine[J]. New Chem Mater. 2007;35(1):41–42,45.
  • Fu F, Shen MG, Wang D, et al. Research progress in benzocyclobutene resins[J]. Modern Chem Indus. 2019;39(1):61–66.
  • Tong J, Diao S, Jin K, et al. Benzocyclobutene-functionalized poly(m-phenylene): a novel polymer with low dielectric constant and high thermostability[J]. Polymer. 2014;55(16):3628–3633.
  • Hu H, Liu L, Li Z, et al. Benzocyclobutene/vinylphenyl-introduced polycarbosilanes with low dielectric constant, high temperature performance and photopatternability[J]. Polymer. 2015;66:58–66.
  • Matsuda Y, Rathore JS, Interrante LV, et al. Moisture-insensitive polycarbosilane films with superior mechanical properties[J]. Acs Appl Mater Interfaces. 2012;4(5):2659–2663.
  • Hu H, Ma JJ, Li X, et al. Benzocyclobutene-functional double-decker silsesquioxane: self-assembled hybrid resin for high-performance dielectrics and LED encapsulants[J]. Polym Chem. 2019;10(33):4551–4560.
  • Hu H, Ma JJ, Yuan W, et al. Flexible and low-k polymer featuring hard-soft-hybrid strategy[J]. RSC Adv. 2020;10:11898–11902.
  • Zhang SB, Hu H, Huang YW, et al. Cross-linked low dielectric nanoporous polycarbosilane derived from benzocyclobutene-containing poly(carbosilane)-b-polylactide blockcopolymer[J]. Macromol Res. 2017;25(4):381–385.
  • Wei XL, Hu H, Li X, et al. Materials containing benzocyclobutene units with low dielectric constant and good thermostability prepared from star-shaped molecules[J]. J Appl Polym Sci. 2019;136(18):47458.
  • Huang YW, Zhang SB, Hu H, et al. Photoactive polymers with benzocyclobutene/ silacyclobutane dual crosslinked structure and low dielectric constant[J]. J Polym Sci A Polym Chem. 2017;55(11):1920–1928.
  • Piriou C, Viers L, Lucas R, et al. Rheological and thermal behavior of a hyperbranched polycarbosilane[J]. ApplOrgano-metall Chem. 2018;32(9):4443–4450.
  • RathoreJ S, Interrante LV, Dubois G. Ultra low-k films derived from hyperbranched polycarbosilanes(HBPCS)[J]. Adv Funct Mater. 2008;18(24):4022–4028.
  • Hu J, Carver PI, Meier DJ, et al. Hyperbranched polycarbosiloxanes and polycarbosilanes via bimolecular non-linear hydrosilylation polymerization[J]. Polymer. 2012;53(24):5459–5468.
  • Zheng YC, Li SP, Weng ZL, et al. Hyperbranched polymers: advances from synthesis to applications[J]. Chem Soc Rev. 2015;44(12):4091–4130.
  • Li X, Huang YW, Ye X, et al. A facile way via integrating sol-gel and Grignard reaction to prepare siloxane/carbosilane hybridized benzocyclobutene resins with hyperbranched structure, low dielectric constant, and high thermal stability[J]. J Appl Polym Sci. 2020;137(36):49074.
  • Huang MH, Fang YH, Ran L, et al. Synthesis and properties of liquid polycarbosilanes with hyperbranched structures[J]. J Appl Polym Sci. 2009;113(3):1611–1618.
  • LloydJ BF, Ongley PA. The electrophilic substitution of benzocyclobutene-III: Benzocyclobutene-4,5-quinone and some related compounds[J]. Tetrahedron. 1965;21(9):2281–2288.
  • Shen QH, Interrante LV. Preparation and thermal properties of asymmetrically substituted poly(silylenemethylene)s[J]. J Poly Sci Part A Poly Chem. 2015;35(15):3193–3205.
  • Nava P, Carissan Y. On the ring-opening of substituted cyclobutene to benzocyclobutene: analysis of π delocalization, hyperconjugation, and ring strain[J]. Phys Chem Chem Phys. 2014;16(30):16196–16203.
  • So YH, Garrou PE, Im JH, et al. Benzocyclobutene-based polymers for microelectronic applications[C]. Acs Symposium Series, Washington, D.C., 2004:279-293.
  • Kirchhoff RA, Bruza KJ. Benzocyclobutenes in polymer synthesis[J]. Macromol Symp. 2011;54-55(1):531–534.
  • Hayes CO, Chen P, Thedford RP, et al. Effect of ring functionalization on the reaction temperature of benzocyclobutene thermoset polymers[J]. Macromolecules. 2016;49(10):3706–3715.
  • Hu H, Liu L, Li Z, et al. Benzocyclobutene/vinylphenyl-introduced polycarbosilanes with low dielectric constant, high temperature performance and photopatternability[J]. Polymer. 2015;66:58–66.
  • Cao K, Yang L, Huang YW, et al. High temperature thermosets derived from benzocyclobutene-containing main-chain oligomeric carbosilanes[J]. Polymer. 2014;55(22):5680–5688.
  • Zhou K, Luan YH, Ma XS. Synthesis and characterization of the high temperature resistant silicone resin[J]. China Plast Indus. 2014;42(3):50–53,106.
  • Gies A P, Spencer L, Rau N J, et al. Thermally induced cross-linking and degradation reactions of benzocyclobutene-based polymers[J]. Macromolecules. 2017;50(6):2304–2319.
  • Treichel H. Low dielectric constant materials[J]. J Electron Mater. 2001;30(4):290–298.
  • Volksen W, Miller RD, Dubois G. Low dielectric constant materials[J]. Chem Rev. 2010;110(1):56.
  • Liu FP, Chen XR, Hou JR, et al. A fluorinated thermo cross linkable organosiloxane: a new low-k material at high frequency with low water uptake [J]. Macromol Rapid Commun. 2020;42(5):2000600.
  • Chen XR, Fang L, Chen X, et al. A low dielectric polymer derived from a bio-renewable phenol (eugenol)[J]. ACS Sustain Chem Eng. 2018;6(10):13518–13523.
  • Zhou JF, Wang JJ, Zhao JQ, et al. A new fluoropolymer having triazine rings as a dielectric material: synthesis and properties[J]. Polym Chem. 2017;8(39):6173–6180.
  • He F, Jin K, Wang Y, et al. A high performance polymer derived from a biorenewable plant oil (anethole)[J]. ACS Sustain Chem Eng. 2017;5(3):2578–2584.
  • Sneddon IN. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile[J]. Int J Eng Sci. 1965;3(1):47–57.
  • Bolshakov A, Pharr GM. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques[J]. J Mater Res. 1998;13(4):1049–1058.
  • Dubois G, Volksen W, Magbitang T, et al. Molecular network reinforcement of sol-gel glasses[J]. Adv Mater. 2010;19(22):3989–3994.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J Mater Res. 1992;7(6):1564–1583.
  • Voyiadjis GZ, Peters R. Size effects in nanoindentation: an experimental and analytical study[J]. Acta Mech. 2010;211(1–2):131–153.
  • Jiang R, Hu XF, Xu F, et al. Investigation of hybrid method for analyzing nanoindentation data[J]. J Mech Streng. 2009;31(5):857–860.
  • Guo ZF, Guo ZH, Wang YW, et al. Application of atomic force microscope and white light interferometer in surface material tests[J]. Surf Technol. 2018;47(1):254–259.