357
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Facile synthesis of functionalized polysiloxanes with nonconventional fluorescence by oxa-Michael addition reaction

, &
Pages 223-234 | Received 16 May 2023, Accepted 28 Oct 2023, Published online: 17 Nov 2023

References

  • Eduok U, Faye O, Szpunar J. Recent developments and applications of protective silicone coatings: a review of PDMS functional materials. Prog Org Coat. 2017;111:124–163. doi: 10.1016/j.porgcoat.2017.05.012
  • Mark JE. Some interesting things about polysiloxanes. Acc Chem Res. 2004;37(12):946–953. doi: 10.1021/ar030279z
  • Chen Z, Feng S, Wang D. Organosilicon Fluorescent Materials. Polymers. 2023;15(2):21. doi: 10.3390/polym15020332
  • Chrusciel JJ. Modifications of textile materials with functional silanes, liquid silicone softeners, and silicone rubbers—A review. Polymers. 2022;14(20):38. doi: 10.3390/polym14204382
  • Zielecka M, Rabajczyk A, Pastuszka L, et al. Flame resistant silicone-containing coating materials. Coatings. 2020;10(5):14. doi: 10.3390/coatings10050479
  • Yilgör E, Yilgör I. Silicone containing copolymers: synthesis, properties and applications. Prog Polym Sci. 2014;39(6):1165–1195. doi: 10.1016/j.progpolymsci.2013.11.003
  • Wolf MP, Salieb-Beugelaar GB, Hunziker P. PDMS with designer functionalities—properties, modifications strategies, and applications. Prog Polym Sci. 2018;83:97–134. doi: 10.1016/j.progpolymsci.2018.06.001
  • Qi D, Zhang K, Tian G, et al. Stretchable electronics based on PDMS substrates. Adv Mater. 2021;33(6):2003155. doi: 10.1002/adma.202003155
  • de Almeida LD, Wang H, Junge K, et al. Recent advances in Catalytic Hydrosilylations: developments beyond traditional platinum catalysts. Angew Chem Int Ed. 2021;60(2):550–565. doi: 10.1002/anie.202008729
  • Putzien S, Nuyken O, Kuhn FE. Functionalized polysilalkylene siloxanes (polycarbosiloxanes) by hydrosilylation—Catalysis and synthesis. Prog Polym Sci. 2010;35(6):687–713. doi: 10.1016/j.progpolymsci.2010.01.007
  • Gonzaga F, Yu G, Brook MA. Versatile, efficient derivatization of polysiloxanes via click technology. Chem Commun. 2009;2009(13):1730–1732. doi: 10.1039/b821788b
  • Xue L, Wang D, Yang Z, et al. Facile, versatile and efficient synthesis of functional polysiloxanes via thiol–ene chemistry. Eur Polym J. 2013;49(5):1050–1056. doi: 10.1016/j.eurpolymj.2013.01.017
  • Moon HK, Kang S, Yoon HJ. Aziridine-functionalized polydimethylsiloxanes for tailorable polymeric scaffolds: aziridine as a clickable moiety for structural modification of materials. Polym Chem. 2017;8(15):2287–2291. doi: 10.1039/C7PY00317J
  • Tian S, Li J, Cai Z, et al. Piers-Rubinsztajn reaction for BCB functionalized silphenylene/silbiphenylene siloxane oligomers to highly crosslinked low-k thermosets. Eur Polym J. 2018;108:373–379. doi: 10.1016/j.eurpolymj.2018.09.015
  • Yi B, Wang S, Hou C, et al. Dynamic siloxane materials: from molecular engineering to emerging applications. Chem Eng J. 2021;405:127023. doi: 10.1016/j.cej.2020.127023
  • Zuo YJ, Zhang Y, Gou ZM, et al. Facile construction of imidazole functionalized polysiloxanes by thiol-ene “Click” reaction for the consecutive detection of Fe3+ and amino acids. Sens Actuat Chem. 2019;291:235–242. doi: 10.1016/j.snb.2019.04.021
  • Tucker-Schwartz AK, Farrell RA, Garrell RL. Thiol–ene Click reaction as a General route to functional trialkoxysilanes for surface coating applications. J Am Chem Soc. 2011;133(29):11026–11029. doi: 10.1021/ja202292q
  • Feng LL, Zhu SY, Zhang WY, et al. Preparation and characterization of functional alkoxysilanes via catalyst-Free aza-Michael reaction. ChemistrySelect. 2017;2(13):3721–3724. doi: 10.1002/slct.201700492
  • Zuo Y, Wang D, Zhang J, et al. Multifunctional alkoxysilanes prepared by thiol–yne “click” chemistry: their luminescence properties and modification on a silicon surface. RSC Adv. 2014;4(108):62827–62834. doi: 10.1039/C4RA13620A
  • Zuo Y, Gou Z, Zhang C, et al. Polysiloxane-based autonomic self-healing elastomers obtained through dynamic boronic ester bonds prepared by thiol–ene “Click” chemistry. Macromol Rapid Commun. 2016;37(13):1052–1059. doi: 10.1002/marc.201600155
  • Nguyen KDQ, Megone WV, Kong D, et al. Ultrafast diffusion-controlled thiol–ene based crosslinking of silicone elastomers with tailored mechanical properties for biomedical applications. Polym Chem. 2016;7(33):5281–5293. doi: 10.1039/C6PY01134A
  • Wang D, Cao J, Hang D, et al. Novel Organosilicon Synthetic Methodologies. Prog Chem. 2019;31:110–120. doi: 10.1016/j.synthmet.2019.02.009
  • Yang HJ, Zuo YK, Zhang JD, et al. Phosphazene-catalyzed oxa-Michael addition click polymerization. Polym Chem. 2018;9(38):4716–4723. doi: 10.1039/C8PY01089G
  • Wang Y, Du DM. Recent advances in organocatalytic asymmetric oxa-Michael addition triggered cascade reactions. Org Chem Front. 2020;7(20):3266–3283. doi: 10.1039/D0QO00631A
  • Nising CF, Brase S. Recent developments in the field of oxa-Michael reactions. Chem Soc Rev. 2012;41(3):988–999. doi: 10.1039/C1CS15167C
  • Jiang Q, Zhang Y, Du Y, et al. Preparation of hyperbranched polymers by oxa-Michael addition polymerization. Polym Chem. 2020;11(7):1298–1306. doi: 10.1039/C9PY01686D
  • Lin T, Guo B. Curing of rubber via oxa-Michael reaction toward significantly increased aging resistance. Ind Eng Chem Res. 2013;52(51):18123–18130. doi: 10.1021/ie403485e
  • Lin TF, Ma SW, Lu Y, et al. New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction. ACS Appl Mater Interf. 2014;6(8):5695–5703. doi: 10.1021/am500236w
  • Esswein B, Molenberg A, Moller M. Use of polyiminophosphazene bases for ring-opening polymerizations. Macromol Symp. 1996;107(1):331–340. doi: 10.1002/masy.19961070131
  • Shi JF, Zhao N, Xia S, et al. Phosphazene superbase catalyzed ring-opening polymerization of cyclotetrasiloxane toward copolysiloxanes with high diphenyl siloxane content. Polym Chem. 2019;10(17):2126–2133. doi: 10.1039/C9PY00247B
  • Zhou Q, Cao BY, Zhu CX, et al. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small. 2016;12(47):6586–6592. doi: 10.1002/smll.201601545
  • Zhao ZH, Chen XH, Wang Q, et al. Sulphur-containing nonaromatic polymers: clustering-triggered emission and luminescence regulation by oxidation. Polym Chem. 2019;10(26):3639–3646. doi: 10.1039/C9PY00519F
  • Lu H, Feng L, Li S, et al. Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in Novel siloxane–Poly(amidoamine) dendrimers. Macromolecules. 2015;48(3):476–482. doi: 10.1021/ma502352x
  • Zhang HK, Zhao Z, McGonigal PR, et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater Today. 2020;32:275–292. doi: 10.1016/j.mattod.2019.08.010
  • Tang S, Yang T, Zhao Z, et al. Nonconventional luminophores: characteristics, advancements and perspectives. Chem Soc Rev. 2021;50(22):12616–12655. doi: 10.1039/D0CS01087A
  • Long JY, Shan JK, Zhao YX, et al. Dramatically enhanced and Red-shifted Photoluminescence Achieved by introducing an electron-withdrawing group into a non-traditional luminescent small organic compound. Chem Asian J. 2021;16(17):2426–2430. doi: 10.1002/asia.202100668