406
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

A new polyazomethine-based pyrazole moiety and its reinforced nanocomposites @ ZnO for antimicrobial applications

, , & ORCID Icon
Pages 1-20 | Received 09 Oct 2023, Accepted 04 May 2024, Published online: 15 May 2024

References

  • Adams R, Bullock J, Wilson W. Contribution to the structure of benzidine. J Am Chem Soc. 1923;45(2):521–527. doi: 10.1021/ja01655a032
  • Grigoras M, Catanescu CO. Imine oligomers and polymers. J Macromol Sci Part C Polym Rev. 2004;44(2):131–173. doi: 10.1081/MC-120034152
  • Yang CJ, Jenekhe SA. Conjugated aromatic poly (azomethines). 1. Characterization of structure, electronic spectra, and processing of thin films from soluble complexes. Chem Mater. 1991;3(5):878–887. doi: 10.1021/cm00017a025
  • Jenekhe SA, Yang CJ, Vanherzeele H, et al. Cubic nonlinear optics of polymer thin films. Effects of structure and dispersion on the nonlinear optical properties of aromatic Schiff base polymers. Chem Mater. 1991;3(6):985–987. doi: 10.1021/cm00018a001
  • Yang CJ, Jenekhe SA. Effects of structure on refractive index of conjugated polyimines. Chem Mater. 1994;6(2):196–203. doi: 10.1021/cm00038a016
  • Yang C-J, Jenekhe SA. Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines. Macromolecules. 1995;28(4):1180–1196. doi: 10.1021/ma00108a054
  • Kaya İ, Çulhaoğlu S. Syntheses and characterizations of oligo (azomethine ether) s derived from 2, 2′-[1, 4-enylenebis (methyleneoxy)] dibenzaldehyde and 2, 2′-[1, 2-phenylenebis (methyleneoxy)] dibenzaldehyde. Chin J Polym Sci. 2012;30(5):682–693. doi: 10.1007/s10118-012-1143-1
  • Mirkin MV, Bard AJ. Voltammetric method for the determination of borohydride concentration in alkaline aqueous solutions. Anal Chem. 1991;63(5):532–533. doi: 10.1021/ac00005a030
  • Ferreira MDL, Vasconcelos TRA, de Carvalho EM, et al. Synthesis and antitubercular activity of novel Schiff bases derived from D-mannitol. Carbohydr Res. 2009;344(15):2042–2047. doi: 10.1016/j.carres.2009.08.006
  • Zhu H-L, Tong Y-X, Chen X-M. Influence of ligand backbones and counter ions on structures of helical silver (I) complexes with di-Schiff bases derived from phthalaldehydes and diamine. J Chem Soc Dalton Trans. 2000;2000(22):4182–4186. doi:10.1039/b005228k
  • Badawi A, Mohamed M, Mohamed MZ, et al. Surface and antitumor activity of some novel metal-based cationic surfactants. J Cancer Res Ther. 2007;3(4):198. doi: 10.4103/0973-1482.38994
  • Wan-Ren Z, Pei-Zhi H, Mei-Ying L, et al. Synthesis of new Schiff bases containing thiophene moiety. Wuhan Univ J Nat Sci. 2003;8(2):433–436. doi: 10.1007/BF02907226
  • Negm NA, Zaki MF. Structural and biological behaviors of some nonionic Schiff-base amphiphiles and their Cu (II) and Fe (III) metal complexes. Colloids Surf B Biointerfaces. 2008;64(2):179–183. doi: 10.1016/j.colsurfb.2008.01.018
  • Barbera J, Oriol L, Serrano J. Hydroxy-functionalized liquid-crystalline polyazomethines I. Synthesis, characterization and structure-mesogenic behaviour relationship. Liq Cryst. 1992;12(1):37–47. doi: 10.1080/02678299208029036
  • Lee KS, Won JC, Jung JC. Synthesis and characterization of processable conducting polyazomethines. die Makromolekulare Chemie. Macromole Chem Phys. 1989;190(7):1547–1552. doi: 10.1002/macp.1989.021900706
  • Park SB, Kim H, Zin WC, et al. Synthesis and properties of polyazomethines having flexible (n-alkyloxy) methyl side chains. Macromolecules. 1993;26(7):1627–1632. doi: 10.1021/ma00059a021
  • Wang C, Shieh S, LeGoff E, et al. Synthesis and characterization of a new conjugated aromatic poly (azomethine) derivative based on the 3 ‘, 4 ‘-dibutyl-α-terthiophene building block. Macromolecules. 1996;29(9):3147–3156. doi: 10.1021/ma9514131
  • Park KH, Tani T, Kakimoto M-A, et al. Synthesis and characterization of new diphenylfluorene‐based aromatic polyazomethines. Macromole Chem Phys. 1998;199(6):1029–1033. doi: 10.1002/(SICI)1521-3935(19980601)199:6<1029:AID-MACP1029>3.0.CO;2-3
  • Rajendran SP, Sengodan K. Synthesis and characterization of zinc oxide and iron oxide nanoparticles using sesbania grandiflora leaf extract as reducing agent. J Nanoscience. 2017:1–7. doi: 10.1155/2017/8348507
  • Batool M, Khurshid S, Qureshi Z, et al. Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chem Papers. 2021;75(3):893–907. doi: 10.1007/s11696-020-01343-7
  • Xing Y, Li W, Wang Q, et al. Antimicrobial nanoparticles incorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules. 2019;24(9):1695. doi: 10.3390/molecules24091695
  • Jamdagni P, Khatri P, Rana J. Green synthesis of zinc oxide nanoparticles using flower extract of nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci. 2018;30(2):168–175. doi: 10.1016/j.jksus.2016.10.002
  • Bekele B, Degefa A, Tesgera F, et al. Green versus chemical precipitation methods of preparing zinc oxide nanoparticles and investigation of antimicrobial properties. J Nanomater. 2021;2021:1–10. doi: 10.1155/2021/9210817
  • Roy S, Rhim J-W. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol. 2020;148:666–676. doi: 10.1016/j.ijbiomac.2020.01.204
  • Abdelghany TM, Al-Rajhi AMH, Yahya R, et al. Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Convers Biorefin. 2023;13(1):417–430. doi: 10.1007/s13399-022-03412-1
  • Chandrasekaran S, Anusuya S, Anbazhagan V. Anticancer, anti-diabetic, antimicrobial activity of zinc oxide nanoparticles: a comparative analysis. J Mol Struct. 2022;1263:133139. doi: 10.1016/j.molstruc.2022.133139
  • Taghizadeh S-M, Lal N, Ebrahiminezhad A, et al. Green and economic fabrication of zinc oxide (ZnO) nanorods as a broadband UV blocker and antimicrobial agent. Nanomaterials. 2020;10(3):530. doi: 10.3390/nano10030530
  • Mortezagholi B, Movahed E, Fathi A, et al. Plant‐mediated synthesis of silver‐doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay. Microsc Res Tech. 2022;85(11):3553–3564. doi: 10.1002/jemt.24207
  • Mahlaule-Glory LM, Hintsho-Mbita NC. Green derived zinc oxide (ZnO) for the degradation of dyes from wastewater and their antimicrobial activity: a review. Catalysts. 2022;12(8):833. doi: 10.3390/catal12080833
  • Karmous I, Taheur FB, Zuverza-Mena N, et al. Phytosynthesis of zinc oxide nanoparticles using Ceratonia siliqua L. and evidence of antimicrobial activity. Plants. 2022;11(22):3079. doi: 10.3390/plants11223079 Plants.
  • Thakur S, Shandilya M, Guleria G. Appraisement of antimicrobial zinc oxide nanoparticles through Cannabis Jatropha curcasa Alovera and Tinosporacordifolia leaves by green synthesis process. J Environ Chem Eng. 2021;9(1):104882. doi: 10.1016/j.jece.2020.104882
  • Maity N, Bruchiel-Spanier N, Sharabani-Yosef O, et al. Zinc oxide nanoparticles embedded photo-crosslinkable PLA-block-PEG toward effective antibacterial coatings. Mater Adv. 2023;4(14):3026–3036. doi: 10.1039/D3MA00169E
  • Le KH, Nguyen M-B, Tran LD, et al. A novel antimicrobial ZnO nanoparticles-added polysaccharide edible coating for the preservation of postharvest avocado under ambient conditions. Prog Org Coat. 2021;158:106339. doi: 10.1016/j.porgcoat.2021.106339
  • La DD, Nguyen-Tri P, Le KH, et al. Effects of antibacterial ZnO nanoparticles on the performance of a chitosan/gum Arabic edible coating for post-harvest banana preservation. Prog Org Coat. 2021;151:106057. doi: 10.1016/j.porgcoat.2020.106057
  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–433. doi: 10.1128/MMBR.00016-10
  • Krishnamoorthy R, Athinarayanan J, Periasamy VS, et al. Antimicrobial activity of nanoemulsion on drug-resistant bacterial pathogens. Microbial Pathogenesis. 2018;120:85–96. doi: 10.1016/j.micpath.2018.04.035
  • Lingaraju K, Raja Naika H, Manjunath K, et al. Biogenic synthesis of zinc oxide nanoparticles using ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl Nanosci. 2016;6(5):703–710. doi: 10.1007/s13204-015-0487-6
  • Sisubalan N, Ramkumar VS, Pugazhendhi A, et al. ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ Sci Pollut Res. 2018;25(11):10482–10492. doi: 10.1007/s11356-017-0003-5
  • Li Y, Liao C, Tjong SC. Recent advances in zinc oxide nanostructures with antimicrobial activities. Int J Mol Sci. 2020;21(22):8836. doi: 10.3390/ijms21228836
  • Akbar S, Tauseef I, Subhan F, et al. An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential. Inorg Nano-Metal Chem. 2020;50(4):257–271. doi: 10.1080/24701556.2019.1711121
  • Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, et al. Silver-zinc oxide nanocomposite: from synthesis to antimicrobial and anticancer properties. Ceram Int. 2021;47(15):21490–21497. doi: 10.1016/j.ceramint.2021.04.160
  • Jin S-E, Jin H-E. Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: from physicochemical characteristics to pharmacological aspects. Nanomaterials. 2021;11(2):263. doi: 10.3390/nano11020263
  • Pino P, Bosco F, Mollea C, et al. Antimicrobial nano-zinc oxide biocomposites for wound healing applications: a review. Pharmaceutics. 2023;15(3):970. doi: 10.3390/pharmaceutics15030970
  • Dixit A, Sabnis A, Shetty A. Antimicrobial edible films and coatings based on N,O-Carboxymethyl chitosan incorporated with Ferula Asafoetida (Hing) and Adhatoda Vasica (Adulsa) extract. Adv Mater Process Technol. 2022;8(3):2699–2715. doi: 10.1080/2374068X.2021.1939982
  • Jain D, Shivani, Bhojiya AA, et al. Microbial fabrication of zinc oxide nanoparticles and evaluation of their antimicrobial and photocatalytic properties. Front Chem. 2020;8:778. doi: 10.3389/fchem.2020.00778
  • Lv X-H, Ren Z-L, Zhou B-G, et al. Discovery of N-(benzyloxy)-1, 3-diphenyl-1H-pyrazole-4-carboxamide derivatives as potential antiproliferative agents by inhibiting MEK. Bioorg Med Chem. 2016;24(19):4652–4659. doi: 10.1016/j.bmc.2016.08.002
  • Reddy VG, Srinivasa Reddy T, Lakshma Nayak V, et al. Design, synthesis and biological evaluation of N-((1-benzyl-1H-1, 2, 3-triazol-4-yl) methyl)-1, 3-diphenyl-1H-pyrazole-4-carboxamides as CDK1/Cdc2 inhibitors. Eur J Med Chem. 2016;122:164–177. doi: 10.1016/j.ejmech.2016.06.011
  • Wang S-F, Yin Y, Zhang Y-L, et al. Synthesis, biological evaluation and 3D-QSAR studies of novel 5-phenyl-1H-pyrazol cinnamamide derivatives as novel antitubulin agents. Eur J Med Chem. 2015;93:291–299. doi: 10.1016/j.ejmech.2015.02.018
  • Zalewski P, Skibiński R, Talaczyńska A, et al. Stability studies of cefoselis sulfate in the solid state. J Pharm Biomed Anal. 2015;114:222–226. doi: 10.1016/j.jpba.2015.05.033
  • Vaarla K, Kesharwani RK, Santosh K, et al. Synthesis, biological activity evaluation and molecular docking studies of novel coumarin substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes. Bioorganic Med Chem Lett. 2015;25(24):5797–5803. doi: 10.1016/j.bmcl.2015.10.042
  • Nayak N, Ramprasad J, Dalimba U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline–pyrazole hybrid derivatives. J Fluor Chem. 2016;183:59–68. doi: 10.1016/j.jfluchem.2016.01.011
  • Khloya P, Kumar S, Kaushik P, et al. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory–antimicrobial agents. Bioorganic Med Chem Lett. 2015;25(6):1177–1181. doi: 10.1016/j.bmcl.2015.02.004
  • Miniyar PB, Barmade MA, Mahajan AA. Synthesis and biological evaluation of 1-(5-(2-chloroquinolin-3-yl)-3-phenyl-1H-pyrazol-1-yl) ethanone derivatives as potential antimicrobial agents. J Saudi Chem Soc. 2015;19(6):655–660. doi: 10.1016/j.jscs.2013.12.004
  • Viveka S, Shama P, Nagaraja GK., et al. Design and synthesis of some new pyrazolyl-pyrazolines as potential anti-inflammatory, analgesic and antibacterial agents. Eur J Med Chem. 2015;101:442–451. doi: 10.1016/j.ejmech.2015.07.002
  • Abdellatif KR, Elshemy HA, Azoz AA. 1-(4-methane (amino) sulfonylphenyl)-3-(4-substituted-phenyl)-5-(4-trifluoromethylphenyl)-1H-2-pyrazolines/pyrazoles as potential anti-inflammatory agents. Bioorg Chem. 2015;63:13–23. doi: 10.1016/j.bioorg.2015.09.002
  • Kumar H, Bansal KK, Goyal A. Synthetic methods and antimicrobial perspective of pyrazole derivatives: an insight. Anti-Infective Agents. 2020;18(3):207–223. doi: 10.2174/2211352517666191022103831
  • Marinescu M. Synthesis of antimicrobial benzimidazole–pyrazole compounds and their biological activities. Antibiotics. 2021;10(8):1002. doi: 10.3390/antibiotics10081002
  • Alnufaie R, Raj KC H, Alsup N, et al. Synthesis and antimicrobial studies of coumarin-substituted pyrazole derivatives as potent anti-staphylococcus aureus agents. Molecules. 2020;25(12):2758. doi: 10.3390/molecules25122758
  • Elfahham HA, Elgemeie GEH, Ibraheim YR, et al. Studies on 3, 5‐diaminopyrazoles: new routes for the synthesis of new pyrazoloazines and pyrazoloazoles. Liebigs Ann Chem. 1988;1988(8):819–822. doi: 10.1002/jlac.198819880820
  • Kryštof V, Cankař P, Fryšová I, et al. 4-arylazo-3, 5-diamino-1 H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem. 2006;49(22):6500–6509. doi: 10.1021/jm0605740
  • Karcı F, Demirçalı A. Synthesis of disazo pyrazolo [1, 5-a] pyrimidines. Dyes Pigments. 2007;74(2):288–297. doi: 10.1016/j.dyepig.2006.02.007
  • Srinivasan D, Nathan S, Suresh T, et al. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J Ethnopharmacol. 2001;74(3):217–220. doi: 10.1016/S0378-8741(00)00345-7
  • William H. Microbiological assay, an introduction to quantitative principles and evaluation. New York: Academic Press; 1977.
  • Ge B, Wang F, Sjölund-Karlsson M, et al. Antimicrobial resistance in campylobacter: susceptibility testing methods and resistance trends. J Microbiol Methods. 2013;95(1):57–67. doi: 10.1016/j.mimet.2013.06.021
  • Turan N, Kaya E, Gündüz B, et al. Synthesis, characterization of poly (E)-3-amino-4-((3-bromophenyl) diazenyl)-1H-pyrazol-5-ol: investigation of antibacterial activity, fluorescence, and optical properties. Fibers Polym. 2012;13(4):415–424. doi: 10.1007/s12221-012-0415-2
  • Sharma D, Sabela MI, Kanchi S, et al. Biosynthesis of ZnO nanoparticles using jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J Photochem Photobiol, B. 2016;162:199–207. doi: 10.1016/j.jphotobiol.2016.06.043
  • Bharathi D, Bhuvaneshwari V. Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: antibacterial, antioxidant and cytotoxic activities. Res Chem Intermed. 2019;45(4):2065–2078. doi: 10.1007/s11164-018-03717-9
  • Vanathi P, Rajiv P, Narendhran S, et al. Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: a green chemistry approach. Materials Letters. 2014;134:13–15. doi: 10.1016/j.matlet.2014.07.029