247
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

Cyclodextrin-grafted redox-responsive hydrogel mediated by disulfide bridges for regulated drug delivery

, , &
Pages 21-34 | Received 30 Jan 2024, Accepted 18 May 2024, Published online: 30 May 2024

References

  • Zhong D, Tu Z, Zhang X, et al. Bioreducible peptide-dendrimeric nanogels with abundant expanded voids for efficient drug entrapment and delivery. Biomacromolecules. 2017;18(11):3498–3505. doi: 10.1021/acs.biomac.7b00649
  • Zhang R, Li X, He K, et al. Preparation and properties of redox responsive modified hyaluronic acid hydrogels for drug release. Polym Adv Technol. 2017;28(12):1759–1763. doi: 10.1002/pat.4059
  • Feng N, Yang M, Feng X, et al. Reduction-responsive polypeptide nanogel for intracellular drug delivery in relieving collagen-induced arthritis. ACS Biomater Sci Eng. 2018;4(12):4154–4162. doi: 10.1021/acsbiomaterials.8b00738
  • Zhu B, Zong T, Zheng R, et al. Acid and glutathione dual-responsive, injectable and self-healing hydrogels for controlled drug delivery. Biomacromolecules. 2024;25(3):1838–1849. doi: 10.1021/acs.biomac.3c01274
  • Li D, Kordalivand N, Fransen MF, et al. Reduction‐sensitive dextran nanogels aimed for intracellular delivery of antigens. Adv Funct Mater. 2015;25(20):2993–3003. doi: 10.1002/adfm.201500894
  • Cao F, Ma G, Mei L, et al. Development of disulfide bond crosslinked antimicrobial peptide hydrogel. Colloids Surf A Physicochem Eng Asp. 2021;626:127026. doi: 10.1016/j.colsurfa.2021.127026
  • Yao J, Li T, Shi X, et al. A general prodrug nanohydrogel platform for reduction-triggered drug activation and treatment of taxane-resistant malignancies. Acta Biomaterialia. 2021;130:409–422. doi: 10.1016/j.actbio.2021.05.047
  • Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Delivery Rev. 2012;64:116–127. doi: 10.1016/j.addr.2012.09.025
  • Li D, van Nostrum CF, Mastrobattista E, et al. Nanogels for intracellular delivery of biotherapeutics. J Control Release. 2017;259:16–28. doi: 10.1016/j.jconrel.2016.12.020
  • Cheng R, Yan Y, Liu H, et al. Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration. Appl Mater Today. 2018;12:294–308. doi: 10.1016/j.apmt.2018.06.008
  • Osmari BF, Giuliani LM, Reolon JB, et al. Gellan gum-based hydrogel containing nanocapsules for vaginal indole-3-carbinol delivery in trichomoniasis treatment. Eur J Pharm Sci. 2020;151:105379. doi: 10.1016/j.ejps.2020.105379
  • Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007;4(4):403–416. doi: 10.1517/17425247.4.4.403
  • Gonzalez-Gaitano G, Isasi JR, Velaz I, et al. Drug carrier systems based on cyclodextrin supramolecular assemblies and polymers: present and perspectives. Curr Pharm Des. 2017;23(3):411–432. doi: 10.2174/1381612823666161118145309
  • Liu DE, Chen Q, Long Y-B, et al. A thermo-responsive polyurethane organogel for norfloxacin delivery. Polym Chem. 2018;9(2):228–235. doi: 10.1039/C7PY01803G
  • Pinelli F, Ponti M, Delleani S, et al. β-cyclodextrin functionalized agarose-based hydrogels for multiple controlled drug delivery of ibuprofen. Int J Biol Macromol. 2023;252:126284. doi: 10.1016/j.ijbiomac.2023.126284
  • Boztas AO, Karakuzu O, Galante G, et al. Synergistic interaction of paclitaxel and curcumin with cyclodextrin polymer complexation in human cancer cells. Mol Pharm. 2013;10(7):2676–2683. doi: 10.1021/mp400101k
  • Shoukat H, Pervaiz F, Khan M, et al. Development of β-cyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) hybrid nanogels as nano-drug delivery carriers to enhance the solubility of Rosuvastatin: an in vitro and in vivo evaluation. PLOS ONE. 2022;17(1):0263026. doi: 10.1371/journal.pone.0263026
  • Nikitina M, Kochkina N, Arinina M, et al. Beta-cyclodextrin modified hydrogels of kappa-carrageenan for methotrexate delivery. Pharmaceutics. 2023;15(9):2244–2259. doi: 10.3390/pharmaceutics15092244
  • Chunshom N, Chuysinuan P, Thanyacharoen T, et al. Development of gallic acid/cyclodextrin inclusion complex in freeze-dried bacterial cellulose and poly (vinyl alcohol) hydrogel: controlled-release characteristic and antioxidant properties. Mater Chem Phys. 2019;232:294–300. doi: 10.1016/j.matchemphys.2019.04.070
  • Wu X, Zhang T, Hoff B, et al. Mineralized hydrogels induce bone regeneration in critical size cranial defects. Adv Healthc Mater. 2021;10(4):2001101. doi: 10.1002/adhm.202001101
  • Aime S, Gianolio E, Palmisano G, et al. Improved syntheses of bis(β-cyclodextrin) derivatives, new carriers for gadolinium complexes. Org Biomol Chem. 2006;4(6):1124–1130. doi: 10.1039/b517068k
  • Kumprecht L, Buděšínský M, Bouř P, et al. α-cyclodextrins reversibly capped with disulfide bonds. New J Chem. 2010;34(10):2254–2260. doi: 10.1039/c0nj00126k
  • Jiang Q, Zhang Y, Zhuo R, et al. A light and reduction dual sensitive supramolecular self-assembly gene delivery system based on poly(cyclodextrin) and disulfide-containing azobenzene-terminated branched polycations. J Mater Chem B. 2016;4(47):7731–7740. doi: 10.1039/C6TB02248K
  • Gong C, Deng S, Wu Q, et al. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials. 2013;34(4):1413–1432. doi: 10.1016/j.biomaterials.2012.10.068
  • Maheshwari RK, Singh AK, Gaddipati J, et al. Multiple biological activities of curcumin: a short review. Life Sci. 2006;78(18):2081–2087. doi: 10.1016/j.lfs.2005.12.007
  • Duan Y, Cai X, Du H, et al. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces. 2015;128:322–330. doi: 10.1016/j.colsurfb.2015.02.007
  • Mrudula T, Suryanarayana P, Srinivas PN, et al. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun. 2007;361(2):528–532. doi: 10.1016/j.bbrc.2007.07.059
  • Hanif M, Ameer N, Ahmad QU, et al. Improved solubility and corneal permeation of PEGylated curcumin complex used for the treatment of ophthalmic bacterial infections. PLOS ONE. 2022;17(4):1–15. doi: 10.1371/journal.pone.0258355
  • Aboali FA, Habib DA, Elbedaiwy HM, et al. Curcumin-loaded proniosomal gel as a biofriendly alternative for treatment of ocular inflammation: in-vitro and in-vivo assessment. Int J Pharmaceut. 2020;589:119835. doi: 10.1016/j.ijpharm.2020.119835
  • Cheng Y-H, Fung M-P, Chen Y-Q, et al. Development of mucoadhesive methacrylic anhydride-modified hydroxypropyl methylcellulose hydrogels for topical ocular drug delivery. J Drug Delivery Sci Technol. 2024;93:105450. doi: 10.1016/j.jddst.2024.105450
  • Yadav VR, Suresh S, Devi K, et al. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS Pharm Sci Tech. 2009;10(3):752–762. doi: 10.1208/s12249-009-9264-8
  • Liu Y-Y, Fan XD, Gao L. Synthesis and characterization of β‐cyclodextrin based functional monomers and its copolymers with N‐isopropylacrylamide. Macromol biosci. 2003;3(12):715–719. doi: 10.1002/mabi.200300052
  • Chen X, Yuk H, Wu J, et al. Instant tough bioadhesive with triggerable benign detachment. Proc Natl Acad Sci U S A. 2020;117(27):15497–15503. doi: 10.1073/pnas.2006389117
  • Tranoudis I, Efron N. Water properties of soft contact lens materials. Contact Lens Anterior Eye. 2004;27(4):177–191. doi: 10.1016/j.clae.2004.08.002
  • Krysztofiak K. Study of dehydration and water states in new and worn soft contact lens materials. Optica Applicata. 2014;XLIV(2):237–250.
  • Chen F, Le P, Fernandes-Cunha GM, et al. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair. Biomaterials. 2020;255:120176. doi: 10.1016/j.biomaterials.2020.120176
  • Maulvi FA, Mangukiya MA, Patel PA, et al. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2016;27(6):113. doi: 10.1007/s10856-016-5724-3
  • Jung HJ, Abou-Jaoude M, Carbia BE, et al. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release. 2013;165(1):82–89. doi: 10.1016/j.jconrel.2012.10.010
  • Hoch G, Chauhan A, Radke CJ. Permeability and diffusivity for water transport through hydrogel membranes. J Membr Sci. 2003;214(2):199–209. doi: 10.1016/S0376-7388(02)00546-X
  • Yang Q, Lai X, Ling J, et al. Facile preparation of hydrogel glue with high strength and antibacterial activity from physically linked network. Int J Pharm. 2022;622:121843. doi: 10.1016/j.ijpharm.2022.121843
  • Zhao Z, Fan X, Wang S, et al. Natural polymers-enhanced double-network hydrogel as wearable flexible sensor with high mechanical strength and strain sensitivity. Chin Chem Lett. 2023;34(6):107892. doi: 10.1016/j.cclet.2022.107892
  • Jiang X, Zeng F, Yang X, et al. Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy. Acta Biomater. 2022;141:102–113. doi: 10.1016/j.actbio.2021.12.036
  • Jeong D, Joo SW, Shinde VV, et al. Triple-crosslinked beta-cyclodextrin oligomer self-healing hydrogel showing high mechanical strength, enhanced stability and pH responsiveness. Carbohydr Polym. 2018;198:563–574. doi: 10.1016/j.carbpol.2018.06.117
  • Li R, Guan X, Lin X, et al. Poly(2-hydroxyethyl methacrylate)/beta-cyclodextrin-hyaluronan contact lens with tear protein adsorption resistance and sustained drug delivery for ophthalmic diseases. Acta Biomater. 2020;110:105–118. doi: 10.1016/j.actbio.2020.04.002
  • Xu J, Li X, Sun F. Cyclodextrin-containing hydrogels for contact lenses as a platform for drug incorporation and release. Acta Biomater. 2010;6(2):486–493. doi: 10.1016/j.actbio.2009.07.021
  • Veider F, Haddadzadegan S, Sanchez Armengol E, et al. Inhibition of P-glycoprotein-mediated efflux by thiolated cyclodextrins. Carbohydr Polym. 2024;327:121648. doi: 10.1016/j.carbpol.2023.121648