218
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg+2 sensor

, , , , ORCID Icon &
Pages 35-50 | Received 05 Feb 2024, Accepted 23 May 2024, Published online: 18 Jun 2024

References

  • Jeromiyas N, Elaiyappillai E, Kumar AS, et al. Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection. J Taiwan Inst Chem Eng. 2019;95:466–474. doi: 10.1016/j.jtice.2018.08.030
  • Kunthom R, Piyanuch P, Wanichacheva N, et al. Cage-like silsesequioxanes bearing rhodamines as fluorescence Hg2+ Sensors. J Photochem Photobiol Chem. 2018;356:248–255. doi: 10.1016/j.jphotochem.2017.12.033
  • Bernard S, Enayati A, Redwood L, et al. Autism: a novel form of mercury poisoning. Med Hypotheses. 2001;56(4):462–471. doi: 10.1054/mehy.2000.1281
  • Taki M, Akaoka K, Iyoshi S, et al. Rosamine-based fluorescent sensor with femtomolar affinity for the reversible detection of a mercury ion. Inorg Chem. 2012;51(24):13075–13077. doi: 10.1021/ic301822r
  • Mutter J, Naumann J, Sadaghiani C, et al. Amalgam studies: disregarding basic principles of mercury toxicity. Int J Hyg Environ Health. 2004;207(4):391–397. doi: 10.1078/1438-4639-00305
  • Boening DW. Ecological E€ects, Transport, and Fate of Mercury: A General Review. 2000. 2000;40(12):1335–1351. doi: 10.1016/S0045-6535(99)00283-0
  • López-García I, Rivas RE, Hernández-Córdoba M. Hollow fiber based liquid-phase microextraction for the determination of mercury traces in water samples by electrothermal atomic absorption spectrometry. Anal Chim Acta. 2012;743:69–74. doi: 10.1016/j.aca.2012.07.015
  • Li Y, Chen C, Li B, et al. Elimination Efficiency of Different reagents for the memory effect of mercury using ICP-MS. J Anal Spectrom. 2006;21(1):94–96. doi: 10.1039/B511367A
  • Wang D, Guo L, Huang R, et al. Surface enhanced electrochemiluminescence for ultrasensitive detection of Hg2+. Electrochimica Acta. 2014;150:123–128. doi: 10.1016/j.electacta.2014.10.121
  • Wang C-I, Huang C-C, Lin Y-W, et al. Catalytic gold nanoparticles for fluorescent detection of mercury(II) and Lead(II) Ions. Anal Chim Acta. 2012;745:124–130. doi: 10.1016/j.aca.2012.07.041
  • Hussain MM, Asiri AM, Arshad MN, et al. Fabrication of a Ga3+ sensor probe based on methoxybenzylidenebenzenesulfonohydrazide (MBBSH) by an electrochemical approach. New J Chem. 2018;42(2):1169–1180. doi: 10.1039/C7NJ01891F
  • Rahman MM, Alenazi NA, Hussein MA, et al. Hybride ZnCdCrO embedded aminated polyethersulfone nanocomposites for the development of Hg 2+ ionic sensor. Mater Res Express. 2018;5(6):065019. doi: 10.1088/2053-1591/aac681
  • Khan AAP, Khan A, Alam MA, et al. Chemical Sensing Platform for the Zn+2 Ions Based on Poly(o-Anisidine-Co-Methyl Anthranilate) Copolymer Composites and Their Environmental Remediation in Real Samples. Environ Sci Pollut Res. 2018;25(28):27899–27911. doi: 10.1007/s11356-018-2819-z
  • El-Shishtawy RM, Al-Ghamdi HA, Alam MM, et al. Development of Cd2+ Sensor Based on BZNA/Nafion/Glassy Carbon Electrode by electrochemical approach. Chem Eng J. 2018;352:225–231. doi: 10.1016/j.cej.2018.07.034
  • Ghasimi S, Prescher S, Wang ZJ, et al. Heterophase photocatalysts from water‐soluble conjugated polyelectrolytes: an example of self‐initiation under visible Light. Angew Chem Int Ed. 2015;54(48):14549–14553. doi: 10.1002/anie.201505325
  • Dawson R, Cooper AI, Adams DJ. Nanoporous organic polymer networks. Prog Polym Sci. 2012;37(4):530–563. doi: 10.1016/j.progpolymsci.2011.09.002
  • McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev. 2006;35(8):675. doi: 10.1039/b600349d
  • Thomas A. Functional materials: from hard to soft porous frameworks. Angew Chem Int Ed. 2010;49(45):8328–8344. doi: 10.1002/anie.201000167
  • Wu D, Xu F, Sun B, et al. Design and preparation of porous polymers. Chem Rev. 2012;112(7):3959–4015. doi: 10.1021/cr200440z
  • Das S, Heasman P, Ben T, et al. Porous organic materials: strategic design and structure–function correlation. Chem Rev. 2017;117(3):1515–1563. doi: 10.1021/acs.chemrev.6b00439
  • Kandambeth S, Mallick A, Lukose B, et al. Construction of crystalline 2D Covalent organic frameworks with remarkable chemical (Acid/Base) stability via a combined reversible and irreversible route. J Am Chem Soc. 2012;134(48):19524–19527. doi: 10.1021/ja308278w
  • Wang K, Yang L, Wang X, et al. Covalent triazine frameworks via a Low‐Temperature polycondensation approach. Angew Chem Int Ed. 2017;56(45):14149–14153. doi: 10.1002/anie.201708548
  • Vilela F, Zhang K, Antonietti M. Conjugated porous polymers for energy applications. Energy Environ Sci. 2012;5(7):7819. doi: 10.1039/c2ee22002d
  • Bildirir H, Gregoriou VG, Avgeropoulos A, et al. Porous organic polymers as emerging new materials for organic photovoltaic applications: Current status and future challenges. Mater Horiz. 2017;4(4):546–556. doi: 10.1039/C6MH00570E
  • Baroncini M, d’Agostino S, Bergamini G, et al. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nat Chem. 2015;7(8):634–640. doi: 10.1038/nchem.2304
  • Sun J-K, Antonietti M, Yuan J. Nanoporous ionic organic networks: from synthesis to materials applications. Chem Soc Rev. 2016;45(23):6627–6656. doi: 10.1039/C6CS00597G
  • Zhang P, Qiao Z-A, Jiang X, et al. Nanoporous ionic organic networks: stabilizing and supporting gold nanoparticles for catalysis. Nano Lett. 2015;15(2):823–828. doi: 10.1021/nl504780j
  • Byun J, Patel HA, Thirion D, et al. Reversible water capture by a charged metal-free porous polymer. Polymer. 2017;126:308–313. doi: 10.1016/j.polymer.2017.05.071
  • Li B, Zhang Y, Ma D, et al. Mercury nano-trap for effective and efficient removal of Mercury(II) from aqueous solution. Nat Commun. 2014;5(1):5537. doi: 10.1038/ncomms6537
  • Lu W, Yuan D, Sculley J, et al. Sulfonate-grafted porous polymer networks for preferential CO 2 adsorption at low pressure. J Am Chem Soc. 2011;133(45):18126–18129. doi: 10.1021/ja2087773
  • Yuan Y, Sun F, Li L, et al. Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves. Nat Commun. 2014;5(1):4260. doi: 10.1038/ncomms5260
  • Buyukcakir O, Je SH, Choi DS, et al. Porous cationic polymers: the impact of counteranions and charges on CO 2 capture and conversion. Chem Commun. 2016;52(5):934–937. doi: 10.1039/C5CC08132G
  • Zhang P, Jiang X, Wan S, et al. Charged Porous Polymers using a solid C?O cross‐coupling reaction. Chemistry A European J. 2015;21(37):12866–12870. doi: 10.1002/chem.201501814
  • Zhang Y, Thomas A, Antonietti M, et al. Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. J Am Chem Soc. 2009;131(1):50–51. doi: 10.1021/ja808329f
  • Cherioux F, Guyard L. Synthesis and electrochemical properties of novel 1,3,5-Tris(Oligothienyl)Benzenes: a new generation of 3D reticulating agents. Adv Funct Mater. 2001;11(4):305–309. doi: 10.1002/1616-3028(200108)11:4<305:AID-ADFM305>3.0.CO;2-Y
  • Xu G, Liu H, Zhou Z, et al. α ‐Cyano Triaryl[3]Radialene: unsymmetrical stereo‐configuration, clustering‐enhanced excimer emission, and radical‐involved multimodal information switching. Angew Chem. 2023;135(27):e202305011. doi: 10.1002/ange.202305011
  • Idzik KR, Beckert R, Golba S, et al. Synthesis by Stille cross-coupling procedure and electrochemical properties of C3-symmetric oligoarylobenzenes. Tetrahedron Lett. 2010;51(18):2396–2399. doi: 10.1016/j.tetlet.2010.02.051
  • Hryniewicka A, Breczko J, Siemiaszko G, et al. Three-dimensional organization of Pyrrolo[3,2-b]Pyrrole-based triazine framework using nanostructural spherical carbon: enhancing electrochemical performance of materials for supercapacitors. Sci Rep. 2023;13(1):10737. doi: 10.1038/s41598-023-37708-7
  • Zhang P, Li M, Yang B, et al. Polymerized ionic networks with high charge density: Quasi‐solid electrolytes in lithium‐metal batteries. Adv Mater. 2015;27(48):8088–8094. doi: 10.1002/adma.201502855
  • Troschke E, Leistenschneider D, Rensch T, et al. In situ generation of electrolyte inside pyridine‐based covalent triazine frameworks for direct supercapacitor Integration. ChemSuschem. 2020;13(12):3192–3198. doi: 10.1002/cssc.202000518
  • Park JH, Lee CH, Ju J, et al. Bifunctional covalent organic framework‐derived electrocatalysts with modulated p ‐band centers for rechargeable Zn–air batteries. Adv Funct Mater. 2021;31(25):2101727. doi: 10.1002/adfm.202101727
  • Imato K, Enoki T, Uenaka K, et al. Synthesis, photophysical and electrochemical properties of pyridine, pyrazine and triazine-based (D–π–) 2 a fluorescent dyes. Beilstein J Org Chem. 2019;15:1712–1721. doi: 10.3762/bjoc.15.167
  • Cheng Q, Tang J, Ma J, et al. Graphene and Carbon Nanotube Composite Electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys. 2011;13(39):17615. doi: 10.1039/c1cp21910c
  • Kamedulski P, Lukaszewicz JP, Witczak L, et al. The importance of structural factors for the electrochemical performance of graphene/Carbon nanotube/melamine powders towards the catalytic activity of oxygen reduction reaction. Materials. 2021;14(9):2448. doi: 10.3390/ma14092448
  • Dul S, Ecco LG, Pegoretti A, et al. Graphene/Carbon nanotube hybrid nanocomposites: effect of compression molding and fused filament fabrication on properties. Polymers. 2020;12(1):101. doi: 10.3390/polym12010101
  • Sun Y, He J, Waterhouse GIN, et al. A Selective Molecularly Imprinted Electrochemical Sensor with GO@COF Signal Amplification for the Simultaneous Determination of Sulfadiazine and Acetaminophen. Sens Actuators B Chem. 2019;300:126993. doi: 10.1016/j.snb.2019.126993
  • Pan F, Tong C, Wang Z, et al. Nanocomposite based on graphene and intercalated covalent organic frameworks with hydrosulphonyl groups for electrochemical determination of heavy metal Ions. Microchim Acta. 2021;188(9):295. doi: 10.1007/s00604-021-04956-1
  • AL-Refai HH, Ganash AA, Hussein MA. Sensitive and Selective Voltammetric Sensor Based on Polythiophene Nanocomposite Mixed MWCNT-G for the Determination of Tartrazine. Synth Met. 2021;280:2021. doi: 10.1016/j.synthmet.2021.116875
  • Masarra N-A, Batistella M, Quantin J-C, et al. Fabrication of PLA/PCL/Graphene nanoplatelet (GNP) electrically conductive circuit using the fused filament fabrication (FFF) 3D printing technique. Materials. 2022;15(3):762. doi: 10.3390/ma15030762
  • Katowah DF, Hussein MA, Alam MM, et al. Poly(Pyrrole- Co-o -Toluidine) wrapped CoFe 2 O 4/R(GO–OXSWCNTs) ternary composite material for Ga 3+Sensing ability. RSC Adv. 2019;9(57):33052–33070. doi: 10.1039/C9RA03593A
  • Asiri AM, Hussein MA, Abu‐Zied BM, et al. Enhanced Coating Properties of Ni‐La‐ferrites/Epoxy resin nanocomposites. Polym Compos. 2015;36(10):1875–1883. doi: 10.1002/pc.23095
  • Asiri AM, Hussein MA, Abu-Zied BM, et al. Effect of NiLaxFe2−xO4 nanoparticles on the thermal and coating properties of epoxy resin composites. Compos Part B Eng. 2013;51:11–18. doi: 10.1016/j.compositesb.2013.02.023
  • Sarwar A, Ali M, Khoja AH, et al. Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO2 adsorption. J CO2 Util. 2021;46:101476. doi: 10.1016/j.jcou.2021.101476
  • Ding KH, Wang GL, Zhang M. Characterization of mechanical properties of epoxy resin reinforced with submicron-sized ZnO prepared via in situ synthesis method. Mater Des. 2011;32(7):3986–3991. doi: 10.1016/j.matdes.2011.03.038
  • Rahman MM, Hussein MA, Alamry KA, et al. Polyaniline/Graphene/Carbon nanotubes nanocomposites for sensing environmentally hazardous 4-aminophenol. Nano-Struct Nano-Objects. 2018;15:63–74. doi: 10.1016/j.nanoso.2017.08.006
  • Moriche R, Prolongo SG, Sánchez M, et al. Morphological changes on graphene nanoplatelets induced during dispersion into an epoxy resin by different methods. Compos Part B Eng. 2015;72:199–205. doi: 10.1016/j.compositesb.2014.12.012
  • Liu Y, Babu HV, Zhao J, et al. Effect of Cu-Doped Graphene on the Flammability and Thermal Properties of Epoxy Composites. Compos Part B Eng. 2016;89:108–116. doi: 10.1016/j.compositesb.2015.11.035
  • Hussein MA, El-Shishtawy RM, Obaid AY. The impact of graphene nano-plates on the behavior of novel conducting polyazomethine nanocomposites. RSC Adv. 2017;7(17):9998–10008. doi: 10.1039/C6RA28756E
  • Hussein MA, El-Shishtawy RM, Alamry KA, et al. Efficient water disinfection using hybrid Polyaniline/Graphene/Carbon nanotube nanocomposites. Environ Technol. 2019;40(21):2813–2824. doi: 10.1080/09593330.2018.1466921
  • Savk A, Özdil B, Demirkan B, et al. Multiwalled Carbon Nanotube-Based Nanosensor for Ultrasensitive Detection of Uric Acid, Dopamine, and Ascorbic Acid. Mater Sci Eng C. 2019;99:248–254. doi: 10.1016/j.msec.2019.01.113
  • Shao W, Mai J, Wei Z. Nonenzymatic Lactic Acid Detection Using Cobalt Polyphthalocyanine/Carboxylated Multiwalled Carbon Nanotube Nanocomposites Modified Sensor. Chemosensors. 2022;10(2):83. doi: 10.3390/chemosensors10020083
  • Katowah DF, Hussein MA, Rahman MM, et al. Fabrication of Hybrid PVA-PVC/SnZnOx/SWCNTs Nanocomposites as Sn 2+ Ionic Probe for Environmental Safety. Polym-Plast Technol Mater. 2020;59(6):642–657. doi: 10.1080/25740881.2019.1673409
  • Kang H, Xu L, Cai Y, et al. Using Boronic Acid Functionalization to Simultaneously Enhance Electrical Conductivity and Thermoelectric Performance of Free-Standing Polythiophene Film. Eur Polym J. 2021;144:110208. doi: 10.1016/j.eurpolymj.2020.110208
  • Feng W, Kamide K, Zhou F, et al. Optical and field emission investigations for multiwalled carbon nanotubes with different functionalized groups. Jpn J Appl Phys. 2004;43(1A/B):L36–L39. doi: 10.1143/JJAP.43.L36
  • Mohammed Z, Tcherbi-Narteh A, Jeelani S. Effect of graphene nanoplatelets and montmorillonite nanoclay on mechanical and thermal properties of polymer nanocomposites and carbon fiber reinforced composites. SN Appl Sci. 2020;2(12):1959. doi: 10.1007/s42452-020-03780-1
  • Singh R, Bajpai AK, Shrivastava AK. CdSe QDs Reinforced Poly(1, 8 Diaminonaphthalene) (PDAN) offers improved thermal and AC conductivity properties. SN Appl Sci. 2019;1(8):815. doi: 10.1007/s42452-019-0835-3
  • Biswas Y, Banerjee P, Mandal TK. From polymerizable ionic liquids to Poly(Ionic Liquid)s: structure-dependent thermal, crystalline, conductivity, and solution thermoresponsive behaviors. Macromolecules. 2019;52(3):945–958. doi: 10.1021/acs.macromol.8b02351
  • Kumar D, Jindal P. Effect of multi-walled carbon nanotubes on thermal stability of polyurethane nanocomposites. Mater Res Express. 2019;6(10):105336. doi: 10.1088/2053-1591/ab3ad7
  • Nikolaeva AL, Gofman IV, Yakimansky AV, et al. Polyimide-Based Nanocomposites with Binary CeO2/Nanocarbon Fillers: Conjointly Enhanced Thermal and Mechanical Properties. Polymers. 2020;12(9):1952. doi: 10.3390/polym12091952
  • Qazi RA, Khattak R, Ali Shah L, et al. Effect of MWCNTs functionalization on thermal, electrical, and ammonia-sensing properties of MWCNTs/PMMA and PHB/MWCNTs/PMMA thin films nanocomposites. Nanomaterials. 2021;11(10):2625. doi: 10.3390/nano11102625
  • Ren S, Li C, Zhao X, et al. Surface modification of sulfonated Poly(Ether Ether Ketone) membranes using nafion solution for direct methanol fuel cells. J Membr Sci. 2005;247(1–2):59–63. doi: 10.1016/j.memsci.2004.09.006
  • Wang Z, Liu G, Zhang L, et al. Electrochemical Detection of Trace Cadmium in soil using a Nafion/Stannum film-modified molecular wire carbon paste electrodes. Ionics. 2013;19(11):1687–1693. doi: 10.1007/s11581-013-0891-4
  • Fu L, Xie K, Wang A, et al. High selective detection of mercury (ii) ions by thioether side groups on metal-organic frameworks. Anal Chim Acta. 2019;1081:51–58. doi: 10.1016/j.aca.2019.06.055
  • Gao C, Yu X-Y, Xiong S-Q, et al. Electrochemical detection of Arsenic(III) completely free from noble metal: Fe 3 O 4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal Chem. 2013;85(5):2673–2680. doi: 10.1021/ac303143x
  • Han L, Shen H, Zhu J-X, et al. Mini Review: Electrochemical Electrode Based on Graphene and Its Derivatives for Heavy Metal Ions Detection. Talanta Open. 2022;6:100153. doi: 10.1016/j.talo.2022.100153
  • Liu Z, Xia X, Guan H-K, et al. Hypersensitized Electrochemical Detection of Hg(II) based on tunable sulfur-doped porous Co3O4 nanosheets: Promotion Co2+/Co3+ valence change cycle and adsorption via introducing S. Chem Eng J. 2022;435:134950. doi: 10.1016/j.cej.2022.134950
  • Hussain MM, Rahman MM, Arshad MN, et al. Hg 2+ sensor development based on (E)- N ′-nitrobenzylidene-benzenesulfonohydrazide (NBBSH) derivatives fabricated on a glassy carbon electrode with a nafion matrix. ACS Omega. 2017;2(2):420–431. doi: 10.1021/acsomega.6b00359
  • Wang X, Fang Z, Li Z, et al. R-Phycoerythrin proteins@ZIF-8 composite thin films for mercury ion detection. The Analyst. 2019;144(12):3892–3897. doi: 10.1039/C9AN00449A
  • Janani B, Syed A, Raju LL, et al. Highly selective and effective environmental mercuric ion detection method based on starch modified Ag NPs in presence of glycine. Opt Commun. 2020;465:125564. doi: 10.1016/j.optcom.2020.125564
  • Katowah DF, Alqarni S, Mohammed GI, et al. Selective Hg 2+ sensor performance based various carbon‐nanofillers into CuO‐PMMA nanocomposites. Polym Adv Technol. 2020;31(9):1946–1962. doi: 10.1002/pat.4919