402
Views
6
CrossRef citations to date
0
Altmetric
Research Papers

Methods to control bed erosion at 90° river confluence: an experimental study

&
Pages 297-307 | Received 15 Jun 2016, Accepted 11 Mar 2017, Published online: 10 Apr 2017

References

  • Allahyonesi, H., Omid, M.H., and Haghiabi, A.H., 2008. A study of the effects of the longitudinal arrangement sediment behavior near intake structures. Journal of Hydraulic Research, 46 (6), 814–819.
  • Anh, T.N., and Hosoda, T., 2005. Water surface profile analysis of open channel flows over a circular surface. Journal of Applied Mechanics, 8, 847–854. doi: 10.2208/journalam.8.847
  • Ashmore, P.E., and Parker, G., 1983. Confluence scour in coarse braided streams. Water Resources Research, 19 (2), 392–402. doi: 10.1029/WR019i002p00392
  • Barkdoll, B.D., Ettema, R., and Odgaard, A.J., 1999. Sediment control at lateral diversions: limits and enhancements to vane use. Journal of Hydraulic Engineering, 125 (8), 862–870. doi: 10.1061/(ASCE)0733-9429(1999)125:8(862)
  • Benda, L., et al., 2004. Confluence effects in rivers: interactions of basin scale, network geometry, and disturbance regimes. Water Resources Research, 40 (5). doi:10.1029/2003WR002583
  • Best, J.L., 1985. Flow dynamics and sediment transport at river channel confluence. PhD dissertation. Birbeck College, University of London, 393.
  • Best, J.L., 1988. Sediment transport and bed morphology at river channel confluences. Sedimentology, 35, 481–498. doi: 10.1111/j.1365-3091.1988.tb00999.x
  • Best, J., and Ashworth, P., 1997. Scour in large braided rivers and the recognition of sequence stratigraphic boundaries. Nature, 387 (6630), 275–277. doi: 10.1038/387275a0
  • Best, J., and Reid, I., 1984. Separation zone at open-channel junctions. Journal of Hydraulic Engineering, 110 (11), 1588–1594. doi: 10.1061/(ASCE)0733-9429(1984)110:11(1588)
  • Best, J., and Roy, A., 1991. Mixing-layer distortion at the confluence of channels of different depth. Nature, 350 (6317), 411–413. doi: 10.1038/350411a0
  • Biron, P., Best, J.L., and Roy, A.G., 1996. Effects of bed discordance on flow dynamics at open channel confluences. Journal of Hydraulic Engineering, 122 (12), 676–682. doi: 10.1061/(ASCE)0733-9429(1996)122:12(676)
  • Biron, P., De Serres, B., and Best, J.L., 1993. Shear layer turbulence at unequal depth channel confluence. In: N.J. Clifford, J.R. French, and J. Hardisty, eds. Turbulence: perspectives on flow and sediment transport. New York: John Wiley, 197–213.
  • Biron, P., and Lane, S., 2008. Modelling hydraulics and sediment transport at river confluences. In: S.P. Rice, A.G. Roy, and B.L. Rhoads, eds. River confluences, tributaries and the fluvial network. Chichester: Wiley, 17–43.
  • Biron, P.M., et al., 2002. Spatial patterns of water surface topography at a river confluence. Earth Surface Processes and Landforms, 27 (9), 913–928. doi: 10.1002/esp.359
  • Biswal, S., Mohapatra, P., and Muralidhar, K., 2010. Flow separation at an open channel confluence. ISH Journal of Hydraulic Engineering, 16 (Suppl. 1), 89–98. doi: 10.1080/09715010.2010.10515018
  • Blettler, M., et al., 2015. The impact of significant input of fine sediment on benthic fauna at tributary junctions: a case study of the Bermejo-Paraguay river confluence, Argentina. Ecohydrology, 8 (2), 340–352. doi: 10.1002/eco.1511
  • Borghei, S., and Sahebari, A., 2010. Local scour at open-channel junctions. Journal of Hydraulic Research, 48 (4), 538–542. doi: 10.1080/00221686.2010.492107
  • Boyer, C., Roy, A., and Best, J., 2006. Dynamics of a river channel confluence with discordant beds: flow turbulence, bed load sediment transport, and bed morphology. Journal of Geophysical Research, 111 (F4), 201. doi:10.1029/2005JF000458
  • Bridge, J.S., and Demicco, R.V., 2008. Earth surface processes, landforms and sediment deposits. Cambridge, UK: Cambridge University Press, 392.
  • Church, M., 2006. Bed material transport and the morphology of alluvial river channels. Annual Review of Earth and Planetary Sciences, 34, 325–354. doi: 10.1146/annurev.earth.33.092203.122721
  • Coelho, P.M., 2015. Experimental determination of free surface levels at open-channel junctions. Journal of Hydraulic Research, 53 (3), 394–399. doi: 10.1080/00221686.2015.1013513
  • Constantinescu, G., et al., 2011. Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: insight provided by an eddy-resolving numerical simulation. Water Resources Research, 47 (5). doi:10.1029/2010WR010018
  • Constantinescu, G., et al., 2012. Numerical analysis of the effect of momentum ratio on the dynamics and sediment-entrainment capacity of coherent flow structures at a stream confluence. Journal of Geophysical Research: Earth Surface, 117, 1–21. doi: 10.1029/2012JF002452
  • Đorđević, D., 2012. Role of bed elevation discordance at 90° straight-channel confluences. Proceedings of the 6th International Conference on Fluvial Hydraulics − River Flow 2012, San Jose, Costa Rica, Vol. 2, 1153–1160.
  • Đorđević, D., 2013. Numerical study of 3D flow at right-angled confluences with and without upstream planform curvature. Journal of Hydroinformatics, 15 (4), 1073–1088. doi:10.2166/hydro.2012.150
  • Đorđević, D., and Stojnić, I., 2016. Numerical simulation of 3D flow in right-angled confluences with bed elevation discordance in both converging channels. Procedia Engineering, 154, 1026–1033. doi:10.1016/j.proeng.2016.07.592
  • Duncan, W. W., Poole, G. C., and Meyer, J. L., 2009. Large channel confluences influence geomorphic heterogeneity of a southeastern United States river. Water Resources Research, 45, W10405. doi:10.1029/2008WR007454
  • Eilertsen, R., and Hansen, L., 2008. Morphology of river bed scours on a delta plain revealed by interferometric sonar. Geomorphology, 94 (1–2), 58–68. doi: 10.1016/j.geomorph.2007.04.005
  • Escauriaza, C., et al., 2012. Formation and fate of contaminant particles controlled by turbulent coherent structures and geochemistry in a reactive river confluence. Bulletin of the American Physics Society, 57. doi:2012APS.DFDA13005E
  • Garde, R.J., and Ranga Raju, K.G. 2000. Mechanics of sediment transportation and alluvial stream problems. 3rd ed. New Delhi: New Age International (P) Limited.
  • Giglou, N.A., et al., 2016. An experimental study of sediment transport in channel confluences. International Journal of Sediment Research, 31. doi:10.1016/j.ijsrc.2014.08.001
  • Greated, C. A., 1968. Supercritical flow through a junction. La Houille Blanche, 23 (8), 693–696. doi: 10.1051/lhb/1968045
  • Guillén-Ludeña, S., et al., 2016. Evolution of the hydromorphodynamics of mountain river confluences for varying discharge ratios and junction angles. Geomorphology, 255, 1–15. doi: 10.1016/j.geomorph.2015.12.006
  • Hager, W.H., 1987. Discussion of separation zone at open-channel junctions by James L. Best and Ian Reid (November, 1984). Journal of Hydraulic Engineering, 113 (4), 539–543. doi: 10.1061/(ASCE)0733-9429(1987)113:4(539)
  • Hager, W.H., 1989. Transitional flow in channel junctions. Journal of Hydraulic Engineering, 115, 243–259. doi: 10.1061/(ASCE)0733-9429(1989)115:2(243)
  • Hager, W.H., 1995. Experiments to supercritical junction flow. Experiments. in Fluids, 18, 429–437. doi: 10.1007/BF00208465
  • Hsu, C., Wu, F., and Lee, W., 1998. Flow at 90° equal-width open-channel junction. Journal of Hydraulic Engineering, 124 (2), 186–191. doi: 10.1061/(ASCE)0733-9429(1998)124:2(186)
  • Ikeda, S., Izumi, N., and Ito, R., 1991. Effects of pile dikes on flow retardation and sediment transport. Journal of Hydraulic Engineering, 117 (11), 1459–1478. doi: 10.1061/(ASCE)0733-9429(1991)117:11(1459)
  • Jayaraman, S., 1995. Hydraulic modelling. 1st ed. Chennai: Indian Institute of Technology Madras.
  • Knighton, A.D., 1980. Longitudinal changes in size and sorting of stream-bed material in four English rivers. Geological Society of America Bulletin, 91, 55–62. doi: 10.1130/0016-7606(1980)91<55:LCISAS>2.0.CO;2
  • Kothyari, U.C., 1996. Methods for estimation sediment yield from catchments. Proceedings of the International Seminar on Civil Engineering Practise in Twenty First Century, Roorkee, India, 1071–1086.
  • Lane, S.N., et al., 2008. Causes of rapid mixing at a junction of two large rivers: Río Paraná and Río Paraguay, Argentina. Journal of Geophysical Research, 113 (F02019). doi:10.1029/2006JF000745
  • Liu, T., Chen, L., and Fan, B., 2012. Experimental study on flow pattern and sediment transportation at a 90° open-channel confluence. International Journal of Sediment Research, 27 (2), 178–187. doi: 10.1016/S1001-6279(12)60026-2
  • Livesey, R.H., 1976. The sedimentary influence of a tributary stream growth on the Niobara delta. Proceedings of Third Federal Inter-Agency Sedimentation Conference, 4, 126–137.
  • Lodina, R.V., and Chalov, R.S., 1971. Effect of tributaries on the composition of river sediments and of deformation of the main river channel. Soviet Hydrology, Selected Papers, 4, 370–374.
  • Lyubimova, T., et al., 2014. Formation of the density currents in the zone of confluence of two rivers. Journal of Hydrology, 508, 328–342. doi: 10.1016/j.jhydrol.2013.10.041
  • Martin-Vide, J.P., et al., 2015. Bedload transport in a river confluence. Geomorphology, 250, 15–28. doi: 10.1016/j.geomorph.2015.07.050
  • Melville, B.W., and Sutherland, A.J., 1988. Design method for local scour at bridge piers. Journal of Hydraulic Engineering, 114 (10), 1210–1226. doi: 10.1061/(ASCE)0733-9429(1988)114:10(1210)
  • Miller, J.P., 1958. High mountain streams effects of geology on channel characteristics and bed material. New Mexico Bureau Mines and Mineral Resources Memoir, 4, 53 pp.
  • Mosley, M.P., 1976. An experimental study of channel confluences. The Journal of Geology, 84 (5), 535–562. doi: 10.1086/628230
  • Odgaard, A.J., and Kennedy, J.F., 1983. River-bend bank protection by submerged vanes. Journal of Hydraulic Engineering, 109 (8), 1161–1173. doi: 10.1061/(ASCE)0733-9429(1983)109:8(1161)
  • Odgaard, A.J., and Spoljaric, A., 1986. Sediment control by submerged vanes. Journal of Hydraulic Engineering, 112 (12), 1164–1180. doi: 10.1061/(ASCE)0733-9429(1986)112:12(1164)
  • Odgaard, A.J., and Wang, Y., 1991. Sediment management with submerged vanes. I: theory. Journal of Hydraulic Engineering, 117 (3), 267–267. doi: 10.1061/(ASCE)0733-9429(1991)117:3(267)
  • Paphitis, D., 2001. Sediment movement under unidirectional flows: an assessment of empirical threshold curves. Coastal Engineering, 43 (3), 227–245. doi: 10.1016/S0378-3839(01)00015-1
  • Park, E., and Latrubesse, E., 2015. Surface water types and sediment distribution patterns at the confluence of mega rivers: the Solimões-Amazon and Negro rivers junction. Water Resources Research, 51 (8), 6197–6213. doi: 10.1002/2014WR016757
  • Parsons, D., et al., 2007. Form roughness and the absence of secondary flow in a large confluence–diffluence, Rio Paraná, Argentina. Earth Surface Processes and Landforms, 32 (1), 155–162. doi: 10.1002/esp.1457
  • Ponce, V. M., 1989. Engineering hydrology: principles and practices. New Jersey: Prentice Hall.
  • Ramamurthy, A., Carballada, L., and Tran, D., 1988. Combining open channel flow at right angled junctions. Journal of Hydraulic Engineering, 114 (12), 1449–1460. doi: 10.1061/(ASCE)0733-9429(1988)114:12(1449)
  • Rhoads, B.L., 1987. Changes in stream channel characteristics at tributary junctions. Physical Geography, 8, 346–361.
  • Rhoads, B.L., and Kenworthy, S.T., 1995. Flow structure at an asymmetrical stream confluence. Geomorphology, 11, 273–293. doi:10.1016/0169-555X(94)00069-4
  • Rhoads, B., and Kenworthy, S., 1998. Time-averaged flow structure in the central region of a stream confluence. Earth Surface Processes and Landforms, 23 (2), 171–191. doi: 10.1002/(SICI)1096-9837(199802)23:2<171::AID-ESP842>3.0.CO;2-T
  • Rhoads, B.L., Parsons, D.R., and Johnson, K.K., 2015. Influence of junction angle on three dimensional flow structure and bed morphology at confluent meander bends during different hydrological conditions. Earth Surface Processes and Landforms. doi:10.1002/esp.3624
  • Rhoads, B.L., and Sukhodolov, A.N., 2001. Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities. Water Resources Research, 37 (9), 2393–2410. doi: 10.1029/2001WR000316
  • Ribeiro, M. L., et al., 2012. Flow and sediment dynamics in channel confluences. Journal of Geophysical Research, 117 (F01035). doi:10.1029/2011JF002171
  • Rice, S., and Church, M., 2001. Longitudinal profiles in simple alluvial systems. Water Resources Research, 37 (2), 417–426. doi: 10.1029/2000WR900266
  • van Rijn, L., 1984. Sediment transport, part I: bed load transport. Journal of Hydraulic Engineering, 1431–1456. doi:10.1061/(ASCE)0733-9429(1984)110:10(1431)
  • Riley, J., and Rhoads, B., 2012. Flow structure and channel morphology at a natural confluent meander bend. Geomorphology, 163-164, 84–98. doi: 10.1016/j.geomorph.2011.06.011
  • Riley, J., et al., 2015. Influence of junction angle on three-dimensional flow structure and bed morphology at confluent meander bends during different hydrological conditions. Earth Surface Processes and Landforms, 40 (2), 252–271. doi: 10.1002/esp.3624
  • Roy, A., and Bergeron, N., 1990. Flow and particle paths at a natural river confluence with coarse bed material. Geomorphology, 3 (2), 99–112. doi: 10.1016/0169-555X(90)90039-S
  • Schindfessel, L., Creëlle, S., and De Mulder, T., 2015. Flow patterns in an open channel confluence with increasingly dominant tributary inflow. Water, 7 (9), 4724–4751. doi: 10.3390/w7094724
  • Shakibaeinia, A., Zarrati, A.R., and Tabatabai, M.R.M., 2007. Three-dimensional numerical study of river confluence with bed changes. Proc. of 32nd IAHR Congress, Venice, Italy, 2, 609–617.
  • Subhasish, D., Rajib, D., and Asis, M., 2014. Variations in clear water scour geometry at piers of different effective widths. Turkish Journal of Engineering and Environmental Sciences, 38 (1), 97–111.
  • Szupiany, R., et al., 2009. Morphology, flow structure, and suspended bed sediment transport at two large braid-bar confluences. Water Resources Research, 45 (5). doi:10.1029/2008WR007428
  • Taylor, E.H., 1944. Flow characteristics at rectangular open-channel junctions. Transactions, Journal of Hydraulic Engineering, 109, 893–912.
  • Troutman, B.M., 1980. A stochastic model for particle sorting and related phenomena. Water Resources Research, 16, 65–76. doi: 10.1029/WR016i001p00065
  • Ullah, M.S., Bhattacharya, J.P., and Dupre, W.R., 2015. Confluence scours versus incised valleys: examples from the Cretaceous Ferron Notom Delta, Southeastern Utah, U.S.A. Journal of Sedimentary Research, 85 (5), 445–458. doi: 10.2110/jsr.2015.34
  • Vorosmarty, C.J., B.M. Fekete, Tucker, B.A. 1998. Global river discharge, 1807–1991, V. 1.1 (RivDIS). Data set. Oak Ridge, TN: Oak Ridge National Laboratory Distributed Active Archive Center. Available from: http://www.daac.ornl.gov.
  • Wang, X., et al., 2007. Experimental study on flow behavior at open channel confluences. Frontiers of Architecture and Civil Engineering in China, 1 (2), 211–216. doi: 10.1007/s11709-007-0025-z
  • Zhang, T., Xu, W.L., and Wu, C., 2009. Effect of discharge ratio on flow characteristics in 90° equal-width open-channel junction. Journal of Hydrodynamics, Series B, 21 (4), 541–549. doi: 10.1016/S1001-6058(08)60182-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.