151
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Optimized expressions to evaluate the flow discharge in main channels and floodplains using evolutionary computing and model classification

&
Pages 123-132 | Received 11 Apr 2017, Accepted 06 Aug 2017, Published online: 20 Sep 2017

References

  • Ackers, P., 1992. Hydraulic design of two-stage channels. Journal of Water and Maritime Engineering, 96, 247–257.
  • Ackers, P., 1993. Flow formulae for straight two-stage channels. Journal of Hydraulic Research, 31 (4), 509–531. doi: 10.1080/00221689309498874
  • Ahangar-Asr, A., et al., 2011. Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression. Engineering Computations, 28 (4), 492–507. doi: 10.1108/02644401111131902
  • Altomare, C., Gironella, X., and Laucelli, D., 2013. Evolutionary data-modelling of an innovative low reflective vertical quay. Journal of Hydroinformatics, 15 (3), 763–779. doi: 10.2166/hydro.2012.219
  • Atabay, S., 2001. Stage-discharge, resistance, and sediment transport relationships for flow in straight compound channels. PhD Thesis. The University of Birmingham, Birmingham, UK.
  • Aytek, A. and Kisi, O., 2008. A genetic programming approach to suspended sediment modelling. Journal of Hydrology 351 (3–4), 288–298. doi: 10.1016/j.jhydrol.2007.12.005
  • Azamathulla, H.M. and Haque, A.A.M., 2012. Prediction of scour depth at culvert outlets using gene-expression programming. International Journal of Innovative Computing, Information and Control, 8 (7B), 5045–5054.
  • Azamathulla, H.Md. and Zahiri, A., 2012. Flow discharge prediction in compound channels using linear genetic programming. Journal of Hydrology, 454–455 (455), 203–207. doi: 10.1016/j.jhydrol.2012.05.065
  • Azamathulla, H.Md.,  et al., 2011. Gene-expression programming for the development of a stage–discharge curve of the Pahang river. Water Resources Management, 25 (11), 2901–2916.
  • Berardi, L., et al., 2008. Development of pipe deterioration models for water distribution systems using EPR. Journal of Hydroinformatics, 10 (2), 113–126. doi: 10.2166/hydro.2008.012
  • Bhattacharya, B. and Solomatine, D.P., 2005. Neural networks and M5 model trees in modelling water level–discharge relationship. Neurocomputing, 63, 381–396. doi: 10.1016/j.neucom.2004.04.016
  • Bousmar, D. and Zech, Y., 1999. Momentum transfer for practical flow computation in compound channels. Journal of Hydraulic Engineering, 125 (7), 696–706. doi: 10.1061/(ASCE)0733-9429(1999)125:7(696)
  • Bousmar, D., et al., 2004. Overbank flow in symmetrically narrowing floodplains. Journal of Hydraulic Engineering, 130 (4), 305–312. doi: 10.1061/(ASCE)0733-9429(2004)130:4(305)
  • Carbone, M., et al., 2012. Data-mining approach to investigate sedimentation features in combined sewer overflows. Journal of Hydroinformatics, 14 (3), 613–627. doi: 10.2166/hydro.2011.003
  • Chow, V.T., 1959. Open channel hydraulics. London: McGraw-Hill.
  • Doglioni, A., et al., 2010. Inferring groundwater system dynamics from hydrological time-series data. Hydrological Sciences Journal, 55 (4), 593–608. doi: 10.1080/02626661003747556
  • El-Baroudy, I., et al., 2010. Comparison of three data-driven techniques in modelling the evapotranspiration process. Journal of Hydroinformatics, 12 (4), 365–379. doi: 10.2166/hydro.2010.029
  • Etemad-Shahidi, A., Yasa, R., and Kazeminezhad, M.H., 2011. Prediction of wave-induced scour depth under submarine pipelines using machine learning approach. Applied Ocean Research, 33, 54–59. doi: 10.1016/j.apor.2010.11.002
  • Faramarzi, A., Javadi, A.A., and Ahangar-Asr, A., 2013. Numerical implementation of EPR-based material models in finite element analysis. Computers & Structures, 118, 100–108. doi: 10.1016/j.compstruc.2012.10.002
  • Faramarzi, A., Alani, A.M., and Javadi, A.A., 2014. An EPR-based self-learning approach to material modelling. Computers & Structures, 137, 63–71. doi: 10.1016/j.compstruc.2013.06.012
  • Fernandes, J.N., Leal, J.B., and Cardoso, A.H., 2012. Analysis of flow characteristics in a compound channel: comparison between experimental data and 1-D numerical simulations. Proceedings of the 10th urban environment symposium, 19: 249–262.
  • Ferreria, C. 2001b. Gene-expression programming. A new adaptive algorithm for solving problems. Complex Systems, 13 (2), 87–129.
  • Ferreria, C. 2006. Gene-expression programming, Mathematical Modeling by an Artificial Intelligence, Springer, Berling, Heidelberg, New York, 21.
  • Fiore, A., Berardi, L., and Marano, G.C., 2012. Predicting torsional strength of RC beams by using evolutionary polynomial regression. Advances in Engineering Software, 47, 178–187. doi: 10.1016/j.advengsoft.2011.11.001
  • Gandomi, A.H. and Roke, D.A., 2013. Intelligent formulation of structural engineering systems. In: Seventh M.I.T. conference on computational fluid and solid mechanics. Cambridge, MA: Massachusetts Institute of Technology.
  • Giustolisi, O. and Savic, D.A., 2006. A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics, 8, 207–222.
  • Giustolisi, O. and Savic, D.A., 2009. Advances in data-driven analyses and modelling using EPR-MOGA. Journal of Hydroinformatics, 11, 225–236. doi: 10.2166/hydro.2009.017
  • Giustolisi, O.,  et al., 2007. A multi-model approach to analysis of environmental phenomena. Environmental Modelling & Software, 22, 674–682. doi: 10.1016/j.envsoft.2005.12.026
  • Goyal, M.K. and Ojha, C.S.P., 2011. Estimation of scour downstream of a Ski-jump bucket using support vector and M5 model tree. Water Resources Management, 25 (9), 2177–2195. doi: 10.1007/s11269-011-9801-6
  • Guven A., and Aytek, A., 2009. New approach for stage–discharge relationship: gene-expression programming. Journal of Hydrologic Engineering, 14 (8), 812–820. doi: 10.1061/(ASCE)HE.1943-5584.0000044
  • Guven A,  et al., 2007. Genetic programming-based empirical model for daily reference evapotranspiration estimation. CLEAN – Soil, Air, Water, 36 (10–11), 905–912. doi: 10.1002/clen.200800009
  • Hamidifar, H., Keshavarzi, A., and Omid, M.H., 2016a. Evaluation of 1-D and 2-D models for discharge prediction in straight compound channels with smooth and rough floodplain. Flow Measurement and Instrumentation, 49, 63–69. doi: 10.1016/j.flowmeasinst.2016.05.007
  • Hamidifar, H., Omid, M. H., & Keshavarzi, A., 2016b. Kinetic energy and momentum correction coefficients in straight compound channels with vegetated floodplain. Journal of Hydrology, 537, 10–17. doi: 10.1016/j.jhydrol.2016.03.024
  • Huthoff, F., 2007. Modeling hydraulic resistance of floodplain vegetation. PhD Thesis. Twente University, the Netherlands.
  • Huthoff, F., et al., 2008. Interacting divided channel method for compound channel flow. Journal of Hydraulic Engineering, 134 (8), 1158–1165. doi: 10.1061/(ASCE)0733-9429(2008)134:8(1158)
  • Kashid, S.S. and Maity, R., 2012. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using genetic programming. Journal of Hydrology, 454–455, 26–41. doi: 10.1016/j.jhydrol.2012.05.033
  • Kisi, O. and Guven, A., 2010. A machine code-based genetic programming for suspended sediment concentration estimation. Advances in Engineering Software, 41, 939–945. doi: 10.1016/j.advengsoft.2010.06.001
  • Kisi, O. and Shiri, J., 2012. River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques. Computers & Geosciences, 43, 73–82. doi: 10.1016/j.cageo.2012.02.007
  • Kisi, O., et al., 2012. Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450–451, 48–58. doi: 10.1016/j.jhydrol.2012.05.031
  • Kisi, O., et al., 2013. Modeling of dissolved oxygen in river water using artificial intelligence techniques. Journal of Environmental Informatics, 22 (2), 92–101. doi: 10.3808/jei.201300248
  • Kisi, O., Shiri, J., and Tombul, M., 2013. Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108–117. doi: 10.1016/j.cageo.2012.07.001
  • Knight, D.W. and Sellin, R.H.J. 1987. The SERC flood channel facility. Water and Environment Journal, 1 (2), 198–204. doi: 10.1111/j.1747-6593.1987.tb01212.x
  • Lambert, M.F. and Myers, R.C., 1998. Estimating the discharge capacity in straight compound channels. Proceedings of the Institution of Civil Engineers – Water Maritime and Energy 130, 84–94. doi: 10.1680/iwtme.1998.30477
  • Laucelli, D. and Giustolisi, O., 2011. Scour depth modelling by a multi-objective evolutionary paradigm. Environmental Modeling & Software, 26 (4), 498–509. doi: 10.1016/j.envsoft.2010.10.013
  • Laucelli, D., et al., 2012. EPR-MOGA-XL: an excel based paradigm to enhance transfer of research achievements on data-driven modeling. In: R. Hinkelmann, M.H. Nasermoaddeli, S.Y. Li-ong, D. Savic, P. Fröhle, eds. Proceedings of 10th international conference on hydroinformatics HIC 2012, 14–18 July, Hamburg, Germany.
  • Markus M.,  et al., 2010. Prediction of weekly nitrate-N fluctuations in a small agricultural watershed in Illinois. Journal of Hydroinformatics, 12 (3), 251–261. doi: 10.2166/hydro.2010.064
  • Martin, L.A. and Myers, R.C. 1991. Measurement of overbank flow in a compound river channel. Journal of Institution of Water and Environment Management, 2, 645–657.
  • Myers, W.R.C. 1987. Momentum transfer in a compound channel. Journal of Hydraulic Research, 16, 139–150. doi: 10.1080/00221687809499626
  • Najafzadeh, M. and Zahiri, A. 2015. Neuro-Fuzzy GMDH based evolutionary algorithms to predict flow discharge in straight compound channels. Journal of Hydrologic Engineering, ASCE. doi:10.1061/(ASCE)HE.1943-558.001185.
  • Noori, R., et al., 2010. Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Systems with Applications, 37 (8), 5856–5862. doi: 10.1016/j.eswa.2010.02.020
  • Noori, R.,  et al., 2011. Assessment of input variables determination on the SVM model performance using PCA, gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401 (3), 177–189. doi: 10.1016/j.jhydrol.2011.02.021
  • Noori, R., et al., 2015. How reliable Are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? Journal of Hydraulic Engineering. doi:10.1061/(ASCE)HY.1943-7900.0001062.
  • Parsaie, A., Najafian, S., and Shamsi, Z., 2016. Predictive modeling of discharge of flow in compound open channel using radial basis neural network. Modeling Earth Systems and Environment. doi:10.1007/s40808-016-0207-6.
  • Quinlan, J.R., 1992. Learning with continuous classes. In: Sterling Adams, ed. Proceedings of AI’92. Singapore: World Scientific, 343–348.
  • Rahimikhoob, A., 2014. Comparison between M5 model tree and neural networks for estimating reference evapotranspiration in an arid environment. Water Resources Management, 28 (3), 657–669. doi: 10.1007/s11269-013-0506-x
  • Rahimikhoob, A., Asadi, M., and Mashal, M., 2013. A comparison between conventional and M5 model tree methods for converting Pan evaporation to reference evapotranspiration for semi-arid region. Water Resources Management, 27 (14), 4815–4826. doi: 10.1007/s11269-013-0440-y
  • Roushangar, K., Mehrabani, F.V., Shiri, J., 2014. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs). Journal of hydrology, 514, 114–122. doi: 10.1016/j.jhydrol.2014.03.065
  • Sattar, A.M.A. and Gharabaghi, B., 2015. Gene expression models for prediction of longitudinal dispersion coefficient in streams. Journal of Hydrology, 524, 587–596. doi: 10.1016/j.jhydrol.2015.03.016
  • Savic, D.A., et al., 2006. Modelling sewer failure by evolutionary computing. Water Management Journal, 159 (2), 111–118.
  • Shiri, J. and Kisi, O., 2012. Estimation of daily suspended sediment load by using wavelet conjunction models. Journal of Hydrologic Engineering, 17 (9), 986–1000. doi: 10.1061/(ASCE)HE.1943-5584.0000535
  • Singh, K.K., Pal, M., and Singh, V.P., 2009. Estimation of mean annual flood in Indian catchments using back propagation neural network and M5 model tree. Water Resources Management, 24 (10), 2007–2019. doi: 10.1007/s11269-009-9535-x
  • Shiri, J., et al., 2013. Predicting groundwater level fluctuations with meteorological effect implications – A comparative study among soft computing techniques. Computers & Geosciences, 56, 32–44. doi: 10.1016/j.cageo.2013.01.007
  • Shiri, J., et al., 2014. Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology. 508, 1–11. doi: 10.1016/j.jhydrol.2013.10.034
  • Solomatine, D.P. and Dulal K.N., 2003. Model trees as an alternative to neural networks in rainfall – runoff modelling. Hydrological Sciences Journal, 48 (3), 399–411. doi: 10.1623/hysj.48.3.399.45291
  • Solomatine, D.P. and Xue, Y.P., 2004. M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai river in China. Journal of Hydrologic Engineering, 9 (6), 491–501. doi: 10.1061/(ASCE)1084-0699(2004)9:6(491)
  • Van Prooijen, B.C., Battjes, J.A., and Uijttewaal, W.S.J., 2005. Momentum exchange in straight uniform compound channel flow. Journal of Hydraulic Engineering, 131, 175–183. doi: 10.1061/(ASCE)0733-9429(2005)131:3(175)
  • Wang, Y. and Witten, I.H., 1997. Induction of model trees for predicting continuous classes. Proceedings of the Poster Papers of the European Conference on Machine Learning. Prague: University of Economics, Faculty of Informatics and Statistics.
  • Wormleaton, P.R. and Merrett, D.J., 1990. An improved method of calculation for steady uniform flow in prismatic main channel/flood plain sections. Journal of Hydraulic Research, 28, 157–174. doi: 10.1080/00221689009499084
  • Yang, K., et al., 2014. Stage-discharge prediction in compound channels. Journal of Hydraulic Engineering, 140 (4), 06014001. Available from: doi: 10.1061/(ASCE)HY.1943-7900.0000834
  • Zahiri, A. and Dehghani, A.A., 2009. Flow discharge determination in straight compound channels using ANN. World Academy of Science, Engineering and Technology, 58, 1–8.
  • Zahiri, A. and Azamathulla, H.Md., 2014. Comparison between linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Computing and Applications, 24 (2), 413–420. doi: 10.1007/s00521-012-1247-0
  • Zakaria, N.A, et al., 2010. Gene-expression programming for total bed material load estimation – A case study. Science of the Total Environment, 408 (21), 5078–5085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.