270
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Modelling water flow in a complex watershed in humid a tropical area using SWAT: a case study of Taabo watershed in Ivory Coast

, , , &
Pages 157-167 | Received 22 Sep 2016, Accepted 17 Sep 2017, Published online: 23 Oct 2017

References

  • Abbaspour, K.C., 2013. SWAT-CUP 2013: SWAT calibration and uncertainty programs – a user manual.
  • Abbaspour, K.C., Johnson, C.A. and Van Genuchten, M.T., 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 3, 1340–1352. doi: 10.2136/vzj2004.1340
  • Abbaspour, K.C., et al., 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333, 413–430. doi: 10.1016/j.jhydrol.2006.09.014
  • ANDE-CI (Agence Nationale d’Environnement-Côte d’Ivoire ANDE-CI), 2003. Profil environnemental de Taabo. Ministère de la Construction et du Cadre de Vie, Abidjan, Côte d’Ivoire.
  • Anoh, K.A., 2014. Apport d’un SIG et du modèle agro-hydrologique SWAT dans la gestion durable des ressources en eau du bassin versant du lac de Taabo (centre de la Côte d’Ivoire). Thèse de Doctorat de l’Université Félix Houphouët Boigny (Côte d’Ivoire).
  • Anoh, K.A., et al., 2012. Demarcation of protection perimeters for surface waters of Taabo (Ivory Coast) watershed using GIS and multicriteria analysis. Environmental Engineering and Management Journal, 11, 2123–2131.
  • Aouissi, J., et al., 2016. Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT-application in data-scarce rural Tunisia. Agricultural Water Management, 174, 39–51. doi: 10.1016/j.agwat.2016.03.004
  • Arnold, J.G., et al., 1998. Large area hydrologic modeling and assessment – part 1: model development. Journal of the American Water Resources Association, 34 (1), 73–89. doi: 10.1111/j.1752-1688.1998.tb05961.x
  • Arnold, J.G., et al., 2000. Regional estimation of base flow and groundwater recharge in the upper Mississippi River basin. Journal of Hydrology 227, 21–40. doi: 10.1016/S0022-1694(99)00139-0
  • Bastin, L., et al., 2013. Managing uncertainty in integrated environmental modelling: the UncertWeb framework. Environmental Modelling & Software, 39, 116–134. doi: 10.1016/j.envsoft.2012.02.008
  • Beven, K. and Binley, A., 1992. The future of distributed models – model calibration and uncertainty prediction. Hydrological Processes, 6 (3), 279–298. doi: 10.1002/hyp.3360060305
  • Biémi, J. and Loroux, B.F., 2000. Impacts des grands projets de développement sur l'environnement en Côte d'Ivoire. Etude d'impact environnemental préliminaire. Rapport de recherche JICA-Haut-Commissariat à l'Hydraulique, 4, Abidjan, 62.
  • Bioteau, T., et al., 2002. Evaluation des risques de pollution agricole à l'échelle de bassins versants: intérêts d'une approche par modélisation hydrologique avec SWAT. Ingénieries-EAT, 32, 3–13.
  • Bunea, F., et al., 2010. Hydropower impact on water quality. Environmental Engineering and Management Journal, 9, 1459–1464.
  • Chaponnière, A., 2005. Fonctionnement hydrologique d'un bassin versant montagneux semi-aride: cas du bassin versant du Rehraya (Haut Atlas marocain). Thèse de doctorat. Institut National Agronomique Paris-Grignon, 268 p.
  • Chu, T.W., et al., 2004. Evaluation of the SWAT model’s sediment and nutrient components in the piedmont physiographic region of Maryland. American Society of Agricultural Engineers, 47 (5), 1523–1538. doi: 10.13031/2013.17632
  • Coffey, A.E., et al., 2004. Statistical procedures for evaluating daily and monthly hydrologic model predictions. Transaction of the ASAE, 47, 59–68.
  • Di Luzio, M., et al., 2002. ArcView interface for SWAT 2000, user’s guide. Grassland soil and water research laboratory and USDA agricultural research service, Blackland research center, Texas agricultural experiment station. Texas water resources institute, College station, Texas TWRI Report TR, 193, 351.
  • Eberhart, R.C. and Kennedy, J., 1995. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. Nagoya, Japan, August, 39–43.
  • FAO, 1995. The digital soil map of the world and derived soil properties. CD-ROM, Version 3.5, CD.
  • FAO, 2002. Profil de pauvreté des communautés riveraines du lac de Kossou en Côte d’Ivoire. Programme pour des moyens d’existence durables dans la pêche GCP/INT/735/UK. Unité de Coordination Nationale de la Côte d’Ivoire.
  • Fukunaga, D.C., et al., 2015. Application of the SWAT hydrologic model to a tropical watershed at Brazil. Catena, 125, 206–213. doi: 10.1016/j.catena.2014.10.032
  • Gassman, P.W., et al., 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE. American Society of Agricultural and Biological Engineers, 50 (4), 1211–1250.
  • Groga, N., et al., 2011. Water quality and water-use conflicts in lake Taabo (Ivory Coast). Journal of Ecology, 2, 38–47.
  • Havrylenko, S.B., et al., 2016. Assessment of the soil water content in the Pampas region using SWAT. Catena, 137, 298–309. doi: 10.1016/j.catena.2015.10.001
  • Jourda, J.P., et al., 2006. Contamination of the Abidjan aquifer by sewerage: An assessment of extent and strategies for protection. Groundwater Pollution in Africa, 293–302.
  • Kaiser, E. and Constructors INC-USA, 1980. Aménagement hydroélectrique de Taabo: Rapport final de l’aménagement, affaire vol. 2, N°73118.
  • Kouassi, K.L., 2007. Hydrologie, transport solide et modélisation de la sédimentation dans les lacs des barrages hydroélectriques de Côte d’Ivoire: Cas du lac de Taabo. Thèse de (doctorat). Université Nangui Abrogoua, Abidjan (Côte d’Ivoire).
  • Kuczera, G. and Parent, E., 1998. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. Journal of Hydrology, 211 (1–4), 69–85. doi: 10.1016/S0022-1694(98)00198-X
  • Laurent, F. and Ruelland, D., 2010. Modélisation à base physique de la variabilité hydroclimatique à l’échelle d’un grand bassin versant tropical. Global Change: Facing Risks and Threats to Water Resources, Fez, Morroco, 1–10.
  • Laurent, F., Ruelland, D., and Chapdelaine, M., 2007. Simulation de l’effet de changements de pratiques agricoles sur la qualité des eaux avec le modèle SWAT. Revue des sciences de l'eau, 20 (4), 395–408. doi: 10.7202/016913ar
  • Lévesque, E., 2007. Évaluation de la performance hydrologique du modèle SWAT pour de petits bassins versants agricoles du Québec. Mémoire de maîtrise en génie civil de l'Université Laval (Québec).
  • Maliehe, M., and Mulungu, D.M., 2017. Assessment of water availability for competing uses using SWAT and WEAP in South Phuthiatsana catchment, Lesotho. Physics and Chemistry of the Earth, Parts A/B/C.
  • Molina-Navarro, E., et al., 2017. The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environmental Modelling & Software, 93, 255–267. doi: 10.1016/j.envsoft.2017.03.018
  • Moriasi, D.N. and Starks, P.J., 2010. Effects of the resolution of soil dataset and precipitation dataset on SWAT2005 streamflow calibration parameters and simulation accuracy. Journal of Soil and Water Conservation, 65 (2), 63–78. doi: 10.2489/jswc.65.2.63
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900. doi: 10.13031/2013.23153
  • Neitsch, S.L., et al., 2005. Soil and water assessment tool, theoretical documentation. Version 2005, Blackland Research Center, ARS. Temple, Texas. Texas Water Resources Institute, College Station, Texas TWRI Report TR, 365, 566.
  • Neitsch, S.L., et al., 2011. Soil and water assessment tool theoretical documentation, version 2005. Grassland, Soil and Water Research Laboratory – Agricultural Research Service. Blackland Research Center – Texas Agricultural Experiment Station. Texas Water Resources Institute, College Station, Texas TWRI Report TR, 192, 472.
  • Obuobie, E., 2008. Estimation of groundwater recharge in the context of future climate change in the White Volta River Basin, West Africa. Thesis (Ecology and Development PhD). Rheinischen Friedrich-Wilhelms-Universität Bonn, Germany.
  • Refsgaard, J.C., et al., 2007. Uncertainty in the environmental modelling process – a framework and guidance. Environmental Modelling & Software, 22, 1543–1556. doi: 10.1016/j.envsoft.2007.02.004
  • RNA. 2001 (Recensement National de l’Agriculture), 2004. Analyse des données. Rapports des statistiques agricoles en côte d’ivoire, 38.
  • Rollo, N., 2012. Modélisation des dynamiques de pollution diffuse dans le bassin versant de la rivère d’Auray. Quantification, caractérisation et gestion des apports nutritifs terrigènes. Thèse (de Doctorat en géographie de) l’Université de Nantes.
  • Rouholahnejad, E., et al., 2012. Parallelization framework for calibration of hydrological models. Environmental Modelling & Software, 31, 28–36. doi: 10.1016/j.envsoft.2011.12.001
  • Santhi, C., et al., 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37 (5), 1169–1188. doi: 10.1111/j.1752-1688.2001.tb03630.x
  • Schuol, J. and Abbaspour, K.C., 2007. A daily weather generator for predicting rainfall and maximum–minimum temperature using monthly statistics based on a halfdegree climate grid. Ecological Modelling, 201, 301–311. doi: 10.1016/j.ecolmodel.2006.09.028
  • Schuol, J., et al., 2008a. Modeling blue and green water availability in Africa. Water Resources Research, 44, 1–18. doi: 10.1029/2007WR006609
  • Schuol, J., et al., 2008b. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrology, 352, 30–49. doi: 10.1016/j.jhydrol.2007.12.025
  • Sintondji, L.O., Awoye, H.R., and Agbossou, K.E., 2008. Modélisation du bilan hydrologique du bassin versant du Klou au Centre-Bénin: Contribution à la gestion durable des ressources en eau. Bulletin de la Recherche Agronomique du Bénin, 59, 35–48.
  • Sintondji, L.O., Dossou-Yovo, E.R., and Agbossou, K.E., 2013. Modelling the hydrological balance of the Okpara catchment at the Kaboua outlet in Benin. International Journal of AgriScience, 3, 182–197.
  • Sharpley, A.N. and Williams, J.R., 1990. EPIC Erosion/Productivity Impact Calculator: 1. Model Documentation. U.S. Dept. Agric. Tech. Bulletin N° 1768.
  • Thiébault, M., 2010. Modélisation hydrologique d’un scénario de changement climatique sur le bassin versant du Bani avec SWAT. Mémoire de stage de fin d’études pour l’obtention du diplôme d’ingénieur de l’ENGEES.
  • Tolson, B.A. and Shoemaker, C.A., 2004. Watershed modeling of the Cannonsville Basin using SWAT 2000, Model development, calibration and validation for the prediction of the flow, sediment and phosphorus transport to the Cannonsville reservoir. Technical Report, School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, 1, 159.
  • Torok, Z., Ozunu, A., and Cordos, E., 2011. Chemical risk analysis for land-use planning. Storage and handling of flammable materials. Environmental Engineering and Management Journal, 10, 81–88.
  • UNICEF (Fonds des Nations Unies pour l'enfance), 2009. Étude de faisabilité des forages manuels. Identification des zones potentiellement favorables. République de Côte d’Ivoire. Etude réalisée avec la coordination de l’UFRSTRM, Laboratoire de Télédétection et de l’Analyse Spatiale Appliquée à l’Hydrogéologie de l'université de Cocody-Abidjan, 73.
  • Vanga, A.F., 2001. Conséquences socio-économiques de la gestion des ressources naturelles: cas des pêcheries dans les lacs d’Ayamé et de Buyo (Côte d’Ivoire). Thèse (de doctorat). Université d’Abobo-Adjamé.
  • Van Griensven, A. and Meixner, T., 2006. Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science and Technology, 53 (1), 51–59. doi: 10.2166/wst.2006.007
  • Vei, K.N., 2005. Suivi et évaluation de l’impact socio-temporel d’un projet d’aménagement du territoire en Afrique de l’Ouest. L’exemple du barrage de Taabo en Côte d’Ivoire. Apport de la télédétection et des SIG. Thèse (de doctorat) de l’Université de Cocody.
  • Vilaysane, B., et al., 2015. Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR. Procedia Environmental Sciences, 28, 380–390. doi: 10.1016/j.proenv.2015.07.047
  • Weidema, B.P., 2011. Physical impacts of land use in product life cycle assessment, Final report of the EURENVIRONLCAGAPS sub-project on land use, Department of Manufacturing Engineering and Management, Technical University of Denmark.
  • Winchell, M., et al., 2009. ArcSWAT interface for SWAT 2009. User’s Guide. Blackland Research and Extension Center, Texas Agrilife Research. Grassland, Soil and Water Research Laboratory, USDA Agricultural Research Service, 490.
  • Yang, J., et al., 2008. Comparing uncertainty analysis techniques for a SWAT application to Chaohe Basin in China. Journal of Hydrology, 358, 1–23. doi: 10.1016/j.jhydrol.2008.05.012
  • Zuo, D., et al., 2016. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the loess plateau of China. Science of the Total Environment, 544, 238–250. doi: 10.1016/j.scitotenv.2015.11.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.