456
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Improving operational flood forecasting in monsoon climates with bias-corrected quantitative forecasting of precipitation

ORCID Icon & ORCID Icon
Pages 411-421 | Received 25 Aug 2017, Accepted 14 Apr 2018, Published online: 29 May 2018

References

  • Ahasan, M.N. and Khan, A.Q., 2013. Simulation of a flood producing rainfall event of 29 July 2010 over north-west Pakistan using WRF-ARW model. Natural Hazards, 69(1), 351–363. doi:10.1007/s11069-013-0719-6.
  • Andreadis, K., Storck, P., and Lettenmaier, D.P., 2009. Modeling snow accumulation and ablation processes in forested environments. Water Resources Research, 45(5), W05429. doi:10.1029/2008WR007042.
  • Bartholmes, J. and Todini, E., 2005. Coupling meteorological and hydrological models for flood forecasting. Hydrology and Earth System Sciences, 9(4), 333–346. doi: 10.5194/hess-9-333-2005
  • Biancamaria, S., Hossain, F., and Lettenmaier, D.P., 2011. Forecasting transboundary river water elevations from space. Geophysical Research Letters, 38(11), L11401(1–5). doi:10.1029/2011GL047290.
  • Bowling, L.C. and Lettenmaier, D.P., 2010. Modeling the effects of lakes and wetlands on the water balance of Arctic environments. Journal of Hydrometeorology, 11(2), 276–295, doi:10.1175/2009JHM1084.1.
  • Cane, D., et al., 2013. Real-time flood forecasting coupling different postprocessing techniques of precipitation forecast ensembles with a distributed hydrological model. The case study of May 2008 flood in western Piemonte, Italy. Natural Hazards and Earth System Science, 13, 211–220. doi: 10.5194/nhess-13-211-2013
  • Chen, J., et al., 2013. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49, 4187–4205. doi:10.1002/wrcr.20331.
  • Cherkauer, K.A., Bowling, L.C., and Lettenmaier, D.P., 2003. Variable infiltration capacity cold land process model updates. Global and Planetary Change, 38, 151–159. doi: 10.1016/S0921-8181(03)00025-0
  • Cloke, H.L. and Pappenberger, F., 2009. Ensemble flood forecasting: a review. Journal of Hydrology, 375, 613–626. doi:10.1016/j.jhydrol.2009.06.005.
  • Coe, M.T., 2000. Modeling terrestrial hydrological systems at the continental scale: testing the accuracy of an atmospheric GCM. Journal of Climate, 13, 686–704. doi: 10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2
  • Dumenil, L. and Todini, E., 1992. A rainfall-runoff scheme for use in the Hamburg climate model. In: J.P. O’Kane, ed. Advances in theoretical hydrology: a tribute to James Dooge. Amsterdam: Elsevier Science Publishers B.V., 129–157.
  • Ebert, E.E., 2001. Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Monthly Weather Review, 129(10), 2461–2480. doi: 10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
  • Hay, L.E., Wilby, R.L., and Leavesley, G.H., 2000. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. Journal of the American Water Resources Association, 36(2), 387–397. doi: 10.1111/j.1752-1688.2000.tb04276.x
  • Hirpa, F.A., et al., 2013. Upstream satellite remote sensing for river discharge forecasting: application to major rivers in South Asia. Remote Sensing of Environment, 131, 140–151. doi: 10.1016/j.rse.2012.11.013
  • Hong, S.Y. and Lee, J.W., 2009. Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmospheric Research, 93(4), 818–831. doi: 10.1016/j.atmosres.2009.03.015
  • Hossain, F., et al., 2014a. Crossing the “valley of death”: lessons learned from implementing an operational satellite-based flood forecasting system. Bulletin of the American Meteorological Society, 95(8), 1201–1207. doi:10.1175/BAMS-D-13-00176.1.
  • Hossain, F., et al., 2014b. Proof of concept of an altimeter-based river forecasting system for transboundary flow inside Bangladesh. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2), 587–601. doi: 10.1109/JSTARS.2013.2283402
  • Hossain, F., et al., 2014c. A promising radar altimetry satellite system for operational flood forecasting in flood-prone Bangladesh. IEEE Geoscience and Remote Sensing Magazine, 2(3), 27–36. doi: 10.1109/MGRS.2014.2345414
  • Hossain, F., et al., 2017. Predicting water availability of the regulated Mekong river basin using satellite observations and a physical model. Asian Journal of Water, Environment and Pollution, 14(3), 39–48. doi: 10.3233/AJW-170024
  • Hsiao, L.F., et al., 2013. Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. Journal of Hydrology, 506, 55–68. doi: 10.1016/j.jhydrol.2013.08.046
  • Jasper, K., Gurtz, J., and Lang, H., 2002. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. Journal of Hydrology, 267, 40–52. doi: 10.1016/S0022-1694(02)00138-5
  • Katiyar, N. and Hossain, F., 2007. An open-book watershed model for prototyping space-borne flood monitoring systems in International River Basins. Environmental Modelling & Software, 22(12), 1720–1731. doi: 10.1016/j.envsoft.2006.12.005
  • Kumar, P., Kishtawal, C.M., and Pal, P.K., 2016. Skill of regional and global model forecast over Indian region. Theoretical and Applied Climatology, 123(3), 629–636. doi:10.1007/s00704-014-1361-2.
  • Kummu, M. and Sarkkula, J., 2008. Impact of the Mekong river flow alteration on the Tonle Sap flood pulse. AMBIO: A Journal of the Human Environment, 37(3), 185–192. doi:10.1579/0044-7447(2008)37[185:IOTMRF]2.0.CO;2.
  • Liang, X., et al., 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 99(D7), 14415–14428. doi: 10.1029/94JD00483
  • Liguori, S., et al., 2012. Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research, 103, 80–95. doi: 10.1016/j.atmosres.2011.05.004
  • Liu, J., et al., 2015. A real-time flood forecasting system with dual updating of the NWP rainfall and the river flow. Natural Hazards, 77, 1161–1182. doi: 10.1007/s11069-015-1643-8
  • Lohmann, D., Holube, R.N., and Raschke, E., 1996. A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus A: Dynamic Meteorology and Oceanography, 48(5), 708–721. doi: 10.3402/tellusa.v48i5.12200
  • Lohmann, D., et al., 1998. Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrological Sciences Journal, 43(1), 131–141. doi: 10.1080/02626669809492107
  • Maswood, M. and Hossain, F., 2015. Advancing river modelling in ungauged basins using satellite remote sensing: the case of the Ganges-Brahmaputra-Meghna basin. International Journal of River Basin Management, 14(1), 103–117. doi:10.1080/15715124.2015.1089250.
  • Mpelasoka, F.S. and Chiew, F.H.S., 2009. Influence of rainfall scenario construction methods on runoff projections. Journal of Hydrometeorology, 10(5), 1168–1183. doi: 10.1175/2009JHM1045.1
  • Nam, D.H., et al., 2014. Short-term flood inundation prediction using hydrologic-hydraulic models forced with downscaled rainfall from global NWP. Hydrological Processes, 28, 5844–5859. doi: 10.1002/hyp.10084
  • Nishat, B. and Rahman, S.M., 2009. Water resources modelling of the Ganges-Brahmaputra-Meghna river basins using satellite remote sensing data. JAWRA Journal of the American Water Resources Association, 45, 1313–1327. doi:10.1111/j.1752-1688.2009.00374.x.
  • Rao, Y.V.R., et al., 2007. An experiment using the high resolution Eta and WRF models to forecast heavy precipitation over India. Pure and Applied Geophysics, 164, 1593–1615. doi: 10.1007/s00024-007-0244-1
  • Räty, O., Räisänen, J., and Ylhäisi, J.S., 2014. Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations. Climate Dynamics, 42(9–10), 2287–2303. doi: 10.1007/s00382-014-2130-8
  • Roberts, N.M., et al., 2009. Use of high-resolution NWP rainfall and river flow forecasts for advance warning of the Carlisle flood, north-west England. Meteorological Applications, 16, 23–34. doi: 10.1002/met.94
  • Roosmalen, L.V., et al., 2011. Comparison of hydrological simulations of climate change using perturbation of observations and distribution-based scaling. Soil Science Society of America- Vadose Zone Journal, 10, 136–150. doi:10.2136/vzj2010.0112.
  • Shrestha, M.S., Grabs, W.E., and Khadgi, V.R., 2015. Establishment of a regional flood information system in the Hindu Kush Himalayas: challenges and opportunities. International Journal of Water Resources Development, 31(2), 238–252. doi:10.1080/07900627.2015.1023891.
  • Siddique-E-Akbor, A.H.M., et al., 2014. Satellite precipitation data–driven hydrological modeling for water resources management in the Ganges, Brahmaputra, and Meghna Basins. Earth Interactions, 18(17), 1–25. doi:10.1175/EI-D-14-0017.1.
  • Sikder, S. and Hossain, F., 2016. Assessment of the weather research and forecasting model generalized parameterization schemes for advancement of precipitation forecasting in monsoon-driven river basins. Journal of Advances in Modeling Earth Systems, 8(3), 1210–1228. doi:10.1002/2016MS000678.
  • Sikder, S. and Hossain, F., 2018. Sensitivity of initial condition and cloud microphysics to forecasting of monsoon rainfall in South Asia. Meteorological Applications, 1–18. doi:10.1002/met.1716.
  • Skamarock, W.C., et al., 2008. A description of the advanced research WRF Version 3, NCAR Tech. Note NCAR/TN-4751STR, Nat. Cent. Atmos. Res., Boulder, Colo.
  • Sood, A. and Mathukumalli, B.K.P., 2011. Managing international river basins: reviewing India–Bangladesh transboundary water issues. International Journal of River Basin Management, 9(1), 43–52. doi: 10.1080/15715124.2011.553832
  • Syvitski, J.P.M., et al., 2009. Sinking deltas due to human activities. Nature Geoscience, 2, 681–686. doi:10.1038/ngeo629.
  • Themeßl, M.J., Gobiet, A., and Leuprecht, A., 2011. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. International Journal of Climatology, 31, 1530–1544. doi:10.1002/joc.2168.
  • Verbunt, M., et al., 2006. Verification of a coupled hydrometeorological modelling approach for alpine tributaries in the Rhine basin. Journal of Hydrology, 324, 224–238. doi: 10.1016/j.jhydrol.2005.09.036
  • Webster, P.J., et al., 2010. Extended-range probabilistic forecasts of Ganges and Brahmaputra floods in Bangladesh. Bulletin of the American Meteorological Society, 91(11), 1493–1514. doi: 10.1175/2010BAMS2911.1
  • World Bank, 2016. Proceedings of the regional flood early warning system workshop. Washington DC, World Bank Group. Available from: http://documents.worldbank.org/curated/en/431281468000591916/Proceedings-of-the-regional-flood-early-warning-system-workshop [Accessed 24 August 2017].
  • Yucel, I., et al., 2015. Calibration and evaluation of a flood forecasting system: utility of numerical weather prediction model, data assimilation and satellite-based rainfall. Journal of Hydrology, 523, 49–66. doi: 10.1016/j.jhydrol.2015.01.042
  • Zarfl, C., et al., 2015. A global boom in hydropower dam construction. Aquatic Sciences, 77(1), 161–170. doi:10.1007/s00027-014-0377-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.