734
Views
15
CrossRef citations to date
0
Altmetric
Articles

Remote sensing and GIS techniques to monitor morphological changes along the middle-lower Vistula river, Poland

ORCID Icon
Pages 345-357 | Received 03 Jul 2019, Accepted 10 Mar 2020, Published online: 25 Mar 2020

References

  • Abbe, T. B., & Montgomery, D. R. (2003). Patterns and processes of wood debris accumulation in the Queets river basin, Washington. Geomorphology, 51(1–3), 81–107. https://doi.org/10.1016/S0169-555X(02)00326-4
  • Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. Science, 361(6402), 585–588. https://doi.org/10.1126/science.aat0636
  • Arthun, D., Zaimes, GΝ, & Martin, J. (2013). Temporal river channel changes in the gila box riparian national conservation area, Arizona, USA. Physical Geography, 34(1), 60–73. https://doi.org/10.1080/02723646.2013.778689
  • Babiński, Z. (1992). Hydromorphological consequences of regulating the lower Vistula, Poland. Regulated Rivers: Research & Management, 7(4), 337–348. https://doi.org/10.1002/rrr.3450070404
  • Batalla, R., Iroumé, A., Hernández, M., Llena, M., Mazzorana, B., & Vericat, D. (2018). Recent geomorphological evolution of a natural river channel in a Mediterranean Chilean basin. Geomorphology, 303, 322–337. https://doi.org/10.1016/j.geomorph.2017.12.006
  • Bizzi, S., Demarchi, L., Grabowski, R. C., Weissteiner, C. J., & Van de Bund, W. (2016). The use of remote sensing to characterise hydromorphological properties of European rivers. Aquatic Sciences, 78(1), 57–70. https://doi.org/10.1007/s00027-015-0430-7
  • Bogdanowicz, E., Strupczewski, W. G., & Kochanek, K. (2015). On the run length in annual maximum flow series in the middle Vistula basin in the context of climate change impact. In R. J. Romanowicz & M. Osuch (Eds), Stochastic flood forecasting system (pp. 33–47). Springer.
  • Bujakowski, F., & Falkowski, T. (2019). Hydrogeological analysis supported by remote sensing methods as a tool for assessing the safety of embankments (case study from Vistula river valley, Poland). Water, 11(2), 266. https://doi.org/10.3390/w11020266
  • Camporeale, C., & Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42(10), W10415. https://doi.org/10.1029/2006WR004933
  • Ciszewski, D., & Czajka, A. (2015). Human-induced sedimentation patterns of a channelized lowland river. Earth Surface Processes and Landforms, 40(6), 783–795. https://doi.org/10.1002/esp.3686
  • Cui, X., Guo, X., Wang, Y., Wang, X., Zhu, W., Shi, J., Lin, C., & Gao, X. (2019). Application of remote sensing to water environmental processes under a changing climate. Journal of Hydrology, 574, 892–902. https://doi.org/10.1016/j.jhydrol.2019.04.078
  • Cunningham, S., Mac Nally, R., Read, J., Baker, P., White, M., Thomson, J., & Griffioen, P. (2009). A robust technique for mapping vegetation condition across a major river system. Ecosystems, 12(2), 207–219. https://doi.org/10.1007/s10021-008-9218-0
  • Dewan, A., Corner, R., Saleem, A., Rahman, M. M., Haider, M. R., Rahman, M. M., & Sarker, M. H. (2017). Assessing channel changes of the Ganges-Padma river system in Bangladesh using Landsat and hydrological data. Geomorphology, 276, 257–279. https://doi.org/10.1016/j.geomorph.2016.10.017
  • Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & Van De Giesen, N. (2016). Earth's surface water change over the past 30 years. Nature Climate Change, 6(9), 810–813. https://doi.org/10.1038/nclimate3111
  • Durand, M., Gleason, C.J., Garambois, P.A., Bjerklie, D., Smith, L.C., Roux, H., Rodriguez, E., Bates, P.D., Pavelsky, T.M., Monnier, J. and Chen, X. (2016). An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resources Research, 52(6), 4527–4549. https://doi.org/10.1002/2015WR018434
  • Entwistle, N., Heritage, G., & Milan, D. (2018). Recent remote sensing applications for hydro and morphodynamic monitoring and modelling. Earth Surface Processes and Landforms, 43(10), 2283–2291. https://doi.org/10.1002/esp.4378
  • Euro-Cordex. (2017). Projected change in annual and summer precipitation. Euro-Cordex, European Environment Agency (EEA), eea.europa.eu. Accessed on 25 August 2019.
  • Falkowski, T., Ostrowski, P., Bogucki, M., & Karczmarz, D. (2018). The trends in the main thalweg path of selected reaches of the middle Vistula river, and their relationships to the geological structure of river channel zone. Open Geosciences, 10(1), 554–564. https://doi.org/10.1515/geo-2018-0044
  • Fassoni-Andrade, A. C., & de Paiva, R. C. D. (2019). Mapping spatial-temporal sediment dynamics of river-floodplains in the Amazon. Remote Sensing of Environment, 221, 94–107. https://doi.org/10.1016/j.rse.2018.10.038
  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029
  • Ghosh, M. K., Kumar, L., & Roy, C. (2015). Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 137–144. https://doi.org/10.1016/j.isprsjprs.2014.12.009
  • Gilvear, D., & Bryant, R. (2016). Analysis of remotely sensed data for fluvial geomorphology and river science. In G. M. Kondolf & H. Piégay (Eds), Tools in fluvial geomorphology (pp. 103–132). John Wiley & Sons.
  • Gilvear, D. J., Bryant, R., & Hardy, T. (1999). Remote sensing of channel morphology and in-stream fluvial processes. Progress in Environmental Science, 1, 257–284.
  • Gilvear, D. J., Davids, C., & Tyler, A. N. (2004). The use of remotely sensed data to detect channel hydromorphology; river Tummel, Scotland. River Research and Applications, 20(7), 795–811. https://doi.org/10.1002/rra.792
  • Gleason, C. J. (2015). Hydraulic geometry of natural rivers: A review and future directions. Progress in Physical Geography: Earth and Environment, 39(3), 337–360. https://doi.org/10.1177/0309133314567584
  • Global Compact Network Poland. (2016). Inland Navigation Vistula. http://ungc.org.pl/wp-content/uploads/2016/02/Inland-Navigation-Vistula.pdf.
  • Grabowski, R. C., Surian, N., & Gurnell, A. M. (2014). Characterizing geomorphological change to support sustainable river restoration and management. Wiley Interdisciplinary Reviews: Water, 1(5), 483–512. https://doi.org/10.1002/wat2.1037
  • Groß, E., Mård, J., Kalantari, Z., & Bring, A. (2018). Links between Nordic and Arctic hydroclimate and vegetation changes: Contribution to possible landscape-scale nature-based solutions. Land Degradation & Development, 29(10), 3663–3673. https://doi.org/10.1002/ldr.3115
  • Guerrero, M., Di Federico, V., & Lamberti, A. (2013). Calibration of a 2-D morphodynamic model using water–sediment flux maps derived from an ADCP recording. Journal of Hydroinformatics, 15(3), 813–828. https://doi.org/10.2166/hydro.2012.126
  • Gurnell, A. M., Bertoldi, W., & Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111(1–2), 129–141. https://doi.org/10.1016/j.earscirev.2011.11.005
  • Gurnell, A. M., Downward, S., & Jones, R. (1994). Channel planform change on the river Dee meanders, 1876–1992. Regulated Rivers: Research & Management, 9(4), 187–204. https://doi.org/10.1002/rrr.3450090402
  • Habel, M. (2018). Effects of flow regulation and river channelization on sandbar bird nesting availability at the lower Vistula river. Ecological Questions, 29(4), 43–53. https://doi.org/10.12775/EQ.2018.028
  • Habersack, H., Jäger, E., & Hauer, C. (2013). The status of the Danube river sediment regime and morphology as a basis for future basin management. International Journal of River Basin Management, 11(2), 153–166. https://doi.org/10.1080/15715124.2013.815191
  • Hadjimitsis, D. G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M. G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L., & Clayton, C. R. I. (2010). Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices. Natural Hazards and Earth System Sciences, 10(1), 89–95. https://doi.org/10.5194/nhess-10-89-2010
  • Henshaw, A. J., Gurnell, A. M., Bertoldi, W., & Drake, N. A. (2013). An assessment of the degree to which Landsat TM data can support the assessment of fluvial dynamics, as revealed by changes in vegetation extent and channel position, along a large river. Geomorphology, 202, 74–85. https://doi.org/10.1016/j.geomorph.2013.01.011
  • Hou, J., van Dijk, A. I. J. M., Renzullo, L. J., Vertessy, R. A., & Mueller, N. (2019). Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic inundation remote sensing. Earth System Science Data, 11(3), 1003–1015. https://doi.org/10.5194/essd-11-1003-2019
  • Huang, X., Xie, C., Fang, X., & Zhang, L. (2015). Combining pixel-and object-based machine learning for identification of water-body types from urban high-resolution remote-sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5), 2097–2110. https://doi.org/10.1109/JSTARS.2015.2420713
  • Jensen, J. R. (2005). Thematic map accuracy assessment. In C. C. Keith (Ed), Introductory digital image processing–a remote sensing perspective (pp. 495–515). Prentice Hall Series in Geographic Information Science.
  • Jensen, J. R. (2015). Introductory digital image processing: A remote sensing perspective (4th Ed.). Prentice Hall Press.
  • Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering & Remote Sensing, 75(11), 1307–1317. https://doi.org/10.14358/PERS.75.11.1307
  • Jiang, D., & Wang, K. (2019). The role of satellite-based remote sensing in improving simulated streamflow: A review. Water, 11(8), 1615. https://doi.org/10.3390/w11081615
  • Julien, Y., & Sobrino, J. A. (2019). Optimizing and comparing gap-filling techniques using simulated NDVI time series from remotely sensed global data. International Journal of Applied Earth Observation and Geoinformation, 76, 93–111. https://doi.org/10.1016/j.jag.2018.11.008
  • Kaczmarek, Z. (2003). The impact of climate variability on flood risk in Poland. Risk Analysis, 23(3), 559–566. https://doi.org/10.1111/1539-6924.00336
  • Kaznowska, E., Hejduk, A., & Kempiński, C. (2018). The Vistula river low flows in Warsaw in the 21st century. Acta Sci. Pol. Formatio Circumiectus, 17(1), 29–38. https://doi.org/10.15576/ASP.FC/2018.17.1.29
  • Kesel, R. (2003). Human modifications to the sediment regime of the lower Mississippi River flood plain. Geomorphology, 56(3–4), 325–334. https://doi.org/10.1016/S0169-555X(03)00159-4
  • Klimek, K. (1987). Man's impact on fluvial processes in the Polish Western Carpathians. Geografiska Annaler: Series A, Physical Geography, 69(1), 221–226. https://doi.org/10.1080/04353676.1987.11880209
  • Kundzewicz, Z. W., Parry, M. L., Cramer, W., Holten, J. I., Kaczmarek, Z., Martens, P., Nicholls, R. J., Öquist, M., Rounsevell, M. D. A., & Szolgay, J. (2001). Climate change 2001: Impacts, adaptation, and vulnerability. In J. J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken & K. S. White (Eds), Contribution of working group II to the third assessment report of the intergovernmental panel on climate change (pp. 641–692). Cambridge University Press.
  • Lajczak, A., Plit, J., Soja, R., Starkel, L., & Warowna, J. (2006). Changes of the Vistula river channel and floodplain in the last 200 years. Geographia Polonica, 79(2), 65–87.
  • Langat, P. K., Kumar, L., & Koech, R. (2019). Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology, 325, 92–102. https://doi.org/10.1016/j.geomorph.2018.10.007
  • Latrubesse, E. M., Stevaux, J. C., & Sinha, R. (2005). Tropical rivers. Geomorphology, 70(3), 187–206. https://doi.org/10.1016/j.geomorph.2005.02.005
  • Liébault, F., Lallias-Tacon, S., Cassel, M., & Talaska, N. (2013). Long profile responses of alpine braided rivers in SE France. River Research and Applications, 29(10), 1253–1266. https://doi.org/10.1002/rra.2615
  • Lisimenka, A., & Kubicki, A. (2019). Bedload transport in the Vistula river mouth derived from dune migration rates, southern Baltic Sea. Oceanologia, 61(3), 384–394. https://doi.org/10.1016/j.oceano.2019.02.003
  • Lu, S., Wu, B., Yan, N., & Wang, H. (2011). Water body mapping method with HJ-1A/B satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 13(3), 428–434. https://doi.org/10.1016/j.jag.2010.09.006
  • Ma, M., Wang, X., Veroustraete, F., & Dong, L. (2007). Change in area of Ebinur Lake during the 1998–2005 period. International Journal of Remote Sensing, 28(24), 5523–5533. https://doi.org/10.1080/01431160601009698
  • Majewski, W. (2013). General characteristics of the Vistula and its basin. Acta Energetica, 2(15), 6–15. https://doi.org/10.12736/issn.2300-3022.2013201
  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Mead, A. A., Demas, C. R., Ebersole, B. A., Kleiss, B. A., Little, C. D., Meselhe, E. A., Powell, N. J., Pratt, T. C., & Vosburg, B. M. (2012). A water and sediment budget for the lower Mississippi–atchafalaya river in flood years 2008–2010: Implications for sediment discharge to the oceans and coastal restoration in Louisiana. Journal of Hydrology, 432-433, 84–97. https://doi.org/10.1016/j.jhydrol.2012.02.020
  • Mihic, S., Golusin, M., & Mihajlovic, M. (2011). Policy and promotion of sustainable inland waterway transport in Europe–Danube river. Renewable and Sustainable Energy Reviews, 15(4), 1801–1809. https://doi.org/10.1016/j.rser.2010.11.033
  • Monegaglia, F., Zolezzi, G., Güneralp, I., Henshaw, A. J., & Tubino, M. (2018). Automated extraction of meandering river morphodynamics from multitemporal remotely sensed data. Environmental Modelling & Software, 105, 171–186. https://doi.org/10.1016/j.envsoft.2018.03.028
  • Mutanga, O., & Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25(19), 3999–4014. https://doi.org/10.1080/01431160310001654923
  • Nagol, J. R., Sexton, J. O., Kim, D. H., Anand, A., Morton, D., Vermote, E., & Townshend, J. R. (2015). Bidirectional effects in Landsat reflectance estimates: Is there a problem to solve? ISPRS Journal of Photogrammetry and Remote Sensing, 103, 129–135. https://doi.org/10.1016/j.isprsjprs.2014.09.006
  • Nones, M. (2019). Numerical modelling as a support tool for river habitat studies: An Italian case study. Water, 11(3), 482. https://doi.org/10.3390/w11030482
  • Nones, M., Archetti, R., & Guerrero, M. (2018). Time-lapse photography of the edge-of-water line displacements of a sandbar as a proxy of riverine morphodynamics. Water, 10(5), 617. https://doi.org/10.3390/w10050617
  • Nones, M., & Di Silvio, G. (2016). Modeling of river width variations based on hydrological. Morphological, and Biological Dynamics. Journal of Hydraulic Engineering, 142(7), 04016012. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001135
  • Nones, M., Guerrero, M., & Ronco, P. (2014). Opportunities from low-resolution modelling of river morphology in remote parts of the world. Earth Surface Dynamics, 2(1), 9–19. https://doi.org/10.5194/esurf-2-9-2014
  • Ortega, J. A., Razola, L., & Garzón, G. (2014). Recent human impacts and change in dynamics and morphology of ephemeral rivers. Natural Hazards and Earth System Sciences, 14(3), 713–730. https://doi.org/10.5194/nhess-14-713-2014
  • Paarlberg, A., Guerrero, M., Huthoff, F., & Re, M. (2015). Optimizing dredge-and-dump activities for river navigability using a hydro-morphodynamic model. Water, 7(7), 3943–3962. https://doi.org/10.3390/w7073943
  • Palmer, M., & Ruhi, A. (2018). Measuring Earth’s rivers. Science, 361(6402), 546–547. https://doi.org/10.1126/science.aau3842
  • Pettit, N. E., Froend, R. H., & Davies, P. M. (2001). Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. River Research and Applications, 17(3), 201–215. https://doi.org/10.1002/rrr.624
  • Petts, G. E., Möller, H., & Roux, A. L. (1989). Historical change of large alluvial rivers: Western Europe. J. Wiley.
  • Piniewski, M., Marcinkowski, P., & Kundzewicz, Z. W. (2018). Trend detection in river flow indices in Poland. Acta Geophysica, 66(3), 347–360. https://doi.org/10.1007/s11600-018-0116-3
  • Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sensing, 6(5), 4173–4189. https://doi.org/10.3390/rs6054173
  • Ronco, P., Fasolato, G., Nones, M., & Di Silvio, G. (2010). Morphological effects of damming on lower Zambezi river. Geomorphology, 115(1-2), 43–55. https://doi.org/10.1016/j.geomorph.2009.09.029
  • Rowiński, P. M., Västilä, K., Aberle, J., Järvelä, J., & Kalinowska, M. B. (2018). How vegetation can aid in coping with river management challenges: A brief review. Ecohydrology & Hydrobiology, 18(4), 345–354. https://doi.org/10.1016/j.ecohyd.2018.07.003
  • Rowland, J. C., Shelef, E., Pope, P. A., Muss, J., Gangodagamage, C., Brumby, S. P., & Wilson, C. J. (2016). A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sensing of Environment, 184, 212–228. https://doi.org/10.1016/j.rse.2016.07.005
  • Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., … Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001
  • Rujoiu-Mare, M-R, & Mihai, B-A. (2016). Mapping land cover using remote sensing data and GIS techniques: A case study of Prahova Subcarpathians. Procedia Environmental Sciences, 32, 244–255. https://doi.org/10.1016/j.proenv.2016.03.029
  • Saleh, F., Ducharne, A., Flipo, N., Oudin, L., & Ledoux, E. (2013). Impact of river bed morphology on discharge and water levels simulated by a 1D Saint–venant hydraulic model at regional scale. Journal of Hydrology, 476, 169–177. https://doi.org/10.1016/j.jhydrol.2012.10.027
  • Scaramuzza, P., & Barsi, J. (2005). Landsat 7 scan line corrector-off gap-filled product development. In Proceeding of Pecora, 16, 23–27.
  • Schumm, S. A. (1969). River metamorphosis. Journal of Hydraulic Division, 95(1), 255–274.
  • Smith, L. C. (1997). Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrological Processes, 11(10), 1427–1439. https://doi.org/10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S
  • Starkel, L. (1994). Reflection of the glacial-interglacial cycle in the evolution of the Vistula river basin, Poland. Terra Nova, 6(5), 486–494. https://doi.org/10.1111/j.1365-3121.1994.tb00892.x
  • Subramaniam, S., Suresh Babu, A. V., & Partha Sarathi, R. (2011). Automated water spread mapping using ResourceSat-1 AWiFS data for water bodies information system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 205–215. https://doi.org/10.1109/JSTARS.2010.2085032
  • Sunder, S., Ramsankaran, R., & Ramakrishnan, B. (2017). Inter-comparison of remote sensing sensing-based shoreline mapping techniques at different coastal stretches of India. Environmental Monitoring and Assessment, 189(6), 290. https://doi.org/10.1007/s10661-017-5996-1
  • Surian, N., & Rinaldi, M. (2003). Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, 50(4), 307–326. https://doi.org/10.1016/S0169-555X(02)00219-2
  • Unger Holtz, T. S. (2007). Introductory digital image processing: A remote sensing perspective. Association of Environmental & Engineering Geologists.
  • van Vuren, S., Paarlberg, A., & Havinga, H. (2015). The aftermath of “room for the river” and restoration works: Coping with excessive maintenance dredging. Journal of Hydro-Environment Research, 9(2), 172–186. https://doi.org/10.1016/j.jher.2015.02.001
  • Varrani, A., Nones, M., & Gupana, R. (2019). Long-term modelling of fluvial systems at the watershed scale: Examples from three case studies. Journal of Hydrology, 574, 1042–1052. https://doi.org/10.1016/j.jhydrol.2019.05.012
  • Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A., & Turner, I. L. (2019). Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coastal Engineering, 150, 160–174. https://doi.org/10.1016/j.coastaleng.2019.04.004
  • Wang, B., & Xu, Y. J. (2018). Dynamics of 30 large channel bars in the lower Mississippi River in response to river engineering from 1985 to 2015. Geomorphology, 300, 31–44. https://doi.org/10.1016/j.geomorph.2017.09.041
  • Wang, S., & Mei, Y. (2016). Lateral erosion/accretion area and shrinkage rate of the Linhe reach braided channel of the Yellow River between 1977 and 2014. Journal of Geographical Sciences, 26(11), 1579–1592. https://doi.org/10.1007/s11442-016-1345-5
  • Wellmeyer, J. L., Slattery, M. C., & Phillips, J. D. (2005). Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity river, Texas. Geomorphology, 69(1–4), 1–13. https://doi.org/10.1016/j.geomorph.2004.09.034
  • Wiśniewski, E. (1987). The evolution of the Vistula River valley between Warsaw and Płock basin during the last 15000 years. In L. Starkel (Ed), Evolution of the Vistula River valley during the last 15000 years, part II. (pp. 171–187). IGiPZPAN.
  • Xu, H. (2005). A study on information extraction of water body with the modified normalized difference water index (mndwi). Journal of Remote Sensing, 9(5), 589–595.
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
  • Yamazaki, D., O'Loughlin, F., Trigg, M. A., Miller, Z. F., Pavelsky, T. M., & Bates, P. D. (2014). Development of the global width database for large rivers. Water Resources Research, 50(4), 3467–3480. https://doi.org/10.1002/2013WR014664
  • Yao, Z., Ta, W., Jia, X., & Xiao, J. (2011). Bank erosion and accretion along the Ningxia– Inner Mongolia reaches of the Yellow River from 1958 to 2008. Geomorphology, 127(1–2), 99–106. https://doi.org/10.1016/j.geomorph.2010.12.010
  • Yin, G., Mariethoz, G., & McCabe, M. F. (2017). Gap-Filling of Landsat 7 imagery using the direct sampling method. Remote Sensing, 9(1), 12. https://doi.org/10.3390/rs9010012
  • Zaid, B., Nardone, P., Nones, M., Gerstgraser, C., & Koll, K. (2018). Morphodynamic effects of stone and wooden groynes in a restored river reach. E3S Web of Conferences, 40, 02038. EDP Sciences. https://doi.org/10.1051/e3sconf/20184002038
  • Zhu, Z. (2017). Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 370–384. https://doi.org/10.1016/j.isprsjprs.2017.06.013
  • Ziliani, L., & Surian, N. (2012). Evolutionary trajectory of channel morphology and controlling factors in a large gravel-bed river. Geomorphology, 173-174, 104–117. https://doi.org/10.1016/j.geomorph.2012.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.