1,044
Views
23
CrossRef citations to date
0
Altmetric
Articles

Assessing the impacts of land use/land cover and climate change on surface runoff of a humid tropical river basin in Western Ghats, India

, ORCID Icon &
Pages 141-152 | Received 24 Jun 2018, Accepted 04 Aug 2020, Published online: 17 Sep 2020

References

  • Aggarwal, S. P., Garg, V., Gupta, P. K., Nikam, B. R., & Thakur, P. K. (2012). Climate and LULC change scenarios to study its impact on hydrological regime. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(B8), 147–152. https://d-nb.info/1148351469/34 doi: 10.5194/isprsarchives-XXXIX-B8-147-2012
  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. JAWRA Journal of the American Water Resources Association, 34(1), 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  • Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1–4), 28–61. https://doi.org/10.1016/j.jhydrol.2004.12.010
  • Chawla, I., & Mujumdar, P. P. (2015). Isolating the impacts of land use and climate change on streamflow. Hydrology and Earth System Sciences, 19(8), 3633–3651. https://doi.org/10.5194/hess-19-3633-2015
  • Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: Principles and practices. CRC press.
  • EAWAG. (2007). SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs – A User Manual: Swiss Federal Institute of Aquatic Science and Technology, Switzerland.
  • Franczyk, J., & Chang, H. (2009). The effects of climate change and urbanization on the runoff of the Rock Creek basin in the Portland metropolitan area, Oregon, USA. Hydrological Processes, 23(6), 805–815. https://doi.org/10.1002/hyp.7176
  • Givati, A., Thirel, G., Rosenfeld, D., & Paz, D. (2019). Climate change impacts on streamflow at the upper Jordan river based on an ensemble of regional climate models. Journal of Hydrology: Regional Studies, 21, 92–109. https://doi.org/10.1016/j.ejrh.2018.12.004
  • Hengade, N., & Eldho, T. I. (2016). Assessment of LULC and climate change on the hydrology of Ashti catchment, India using VIC model. Journal of Earth System Science, 125(8), 1623–1634. https://doi.org/10.1007/s12040-016-0753-3
  • IPCC, Climate Change. (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qqin, G-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324.
  • Islam, S., Bari, M., & Anwar, F. (2014). Hydrologic impact of climate change on Murray–hotham catchment of Western Australia: A projection of rainfall–runoff for future water resources planning. Hydrology and Earth System Sciences, 18(9), 3591–3614. https://doi.org/10.5194/hess-18-3591-2014
  • Kim, J., Choi, J., Choi, C., & Park, S. (2013). Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya river basin, Korea. Science of the Total Environment, 452, 181–195. https://doi.org/10.1016/j.scitotenv.2013.02.005
  • Li, H., Sheffield, J., & Wood, E. F. (2010). Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on climate change AR4 models using equidistant quantile matching. Journal of Geophysical Research: Atmospheres, 115(D10), 1–20. https://doi.org/10.1029/2009JD012882.
  • Li, Z., Liu, W. Z., Zhang, X. C., & Zheng, F. L. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 377(1-2), 35–42. https://doi.org/10.1016/j.jhydrol.2009.08.007
  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. https://doi.org/10.1080/01431160600746456
  • Lu, X. X. (2005). Spatial variability and temporal change of water discharge and sediment flux in the lower Jinsha tributary: Impact of environmental changes. River Research and Applications, 21(2-3), 229–243. https://doi.org/10.1002/rra.843
  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part I. A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • Neitsch, S. L., Williams, J. R., Arnold, J. G., & Kiniry, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute. Texas A&M University, College Station, Texas. https://swat.tamu.edu/media/99192/swat2009-theory.pdf.
  • Rounsevell, M. D. A., Reginster, I., Araújo, M. B., Carter, T. R., Dendoncker, N., Ewert, F., House, J. I., Kankaanpää, S., Leemans, R., Metzger, M. J. M., & Schmit, C. (2006). A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems & Environment, 114(1), 57–68. https://doi.org/10.1016/j.agee.2005.11.027
  • Sajikumar, N., & Remya, R. S. (2015). Impact of land cover and land use change on runoff characteristics. Journal of Environmental Management, 161, 460–468. https://doi.org/10.1016/j.jenvman.2014.12.041
  • Sinha, R. K., & Eldho, T. I. (2018). Effects of historical and projected land use/cover change on runoff and sediment yield in the Netravati river basin, Western Ghats, India. Environmental Earth Sciences, 77(3), 111, 1–19. https://doi.org/10.1007/s12665-018-7317-6
  • Trang, N. T. T., Shrestha, S., Shrestha, M., Datta, A., & Kawasaki, A. (2017). Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S river basin (Sekong, Sesan, and Srepok). Science of The Total Environment, 576, 586–598. https://doi.org/10.1016/j.scitotenv.2016.10.138
  • Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., & Srinivasan, R. (2006). A global sensitive analysis tool for the parameters of multi variable catchment models. Journal of Hydrology, 324(1-4), 10–23. https://doi.org/10.1016/j.jhydrol.2005.09.008
  • Wagner, P. D., Kumar, S., & Schneider, K. (2013). An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences, 17(6), 2233–2246. https://doi.org/10.5194/hess-17-2233-2013
  • Wang, S., Kang, S., Zhang, L., & Li, F. (2008). Modelling hydrological response to different land-use and climate change scenarios in the Zamu river basin of northwest China. Hydrological Processes, 22(14), 2502–2510. https://doi.org/10.1002/hyp.6846
  • Woldesenbet, T. A., Elagib, N. A., Ribbe, L., & Heinrich, J. (2017). Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile basin, Ethiopia. Science of the Total Environment, 575, 724–741. https://doi.org/10.1016/j.scitotenv.2016.09.124
  • Woldesenbet, T. A., Elagib, N. A., Ribbe, L., & Heinrich, J. (2018). Catchment response to climate and land use changes in the Upper Blue Nile sub-basins, Ethiopia. Science of the Total Environment, 644, 193–206. https://doi.org/10.1016/j.scitotenv.2018.06.198
  • Wolfram, S. (1998). Cellular automata as models of complexity Nonlinear Physics for Beginners: Fractals, Chaos, Solitons, Pattern Formation, Cellular Automata, Complex Systems, vol. 311, p. 197. https://doi.org/10.1142/9789812384683_0011.
  • Yan, B., Fang, N. F., Zhang, P. C., & Shi, Z. H. (2013). Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology, 484, 26–37. https://doi.org/10.1016/j.jhydrol.2013.01.008
  • Zhang, C., & Li, W. (2005). Markov chain modeling of multinomial land-cover classes. GIScience & Remote Sensing, 42(1), 1–18. https://doi.org/10.2747/1548-1603.42.1.1
  • Zhang, X., Srinivasan, R., & Hao, F. (2007). Predicting hydrologic response to climate change in the Luohe river basin using the SWAT model. Transactions of the ASABE, 50(3), 901–910. https://doi.org/10.13031/2013.23154
  • Zuo, D., Xu, Z., Yao, W., Jin, S., Xiao, P., & Ran, D. (2016). Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Science of the Total Environment, 544, 238–250. https://doi.org/10.1016/j.scitotenv.2015.11.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.