394
Views
4
CrossRef citations to date
0
Altmetric
Articles

Utilization of satellite altimetry retrieved river roughness properties in hydraulic flow modelling of braided river system

ORCID Icon, ORCID Icon & ORCID Icon
Pages 411-424 | Received 10 Mar 2020, Accepted 06 Sep 2020, Published online: 10 Nov 2020

References

  • Berry, P. A. M., Garlick, J. D., Freeman, J. A., & Mathers, E. L. (2005). Global inland water monitoring from multi-mission altimetry. Geophysical Research Letters, 32(16). https://doi.org/10.1029/2005GL022814
  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/un mod`ele à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Journal, 24, 43–69. https://doi.org/10.1080/02626667909491834
  • Birkett, C. M., Mertes, L., Dunne, T., Costa, M., & Jasinski, M. (2002). Sur- face water dynamics in the amazon basin: Application of satellite radar altimetry. Journal of Geophysical Research: Atmospheres, 107(D20), LBA–26. https://doi.org/10.1029/2001JD000609
  • Bridge, J. S. (1993). The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers. Geological Society, London, Special Publications, 75(1), 13–71. https://doi.org/10.1144/GSL.SP.1993.075.01.02
  • Brisset, P., Monnier, J., Garambois, P. A., & Roux, H. (2018). On the assimilation of altimetric data in 1d saint–venant river flow models. Advances in water resources, 119, 41–59. https://doi.org/10.1016/j.advwatres.2018.06.004
  • Bristow, C. S. (1987). Brahmaputra river: channel migration and deposition. Recent Developments in Fluvial Sedimentology.
  • Brunner, G. W. (1995). HEC-RAS river analysis system. Hydraulic reference manual. Version 1.0. Technical Report. Hydrologic Engineering Center.
  • Cartwright, D. E., & Edden, A. C. (1973). Corrected tables of tidal harmonics. Geophysical journal international, 33(3), 253–264. https://doi.org/10.1111/j.1365-246X.1973.tb03420.x
  • Chander, S., & Ganguly, D. (2017). Development of water level estimation algorithms using SARAL/Altika dataset and validation over the Ukai reservoir, India. Journal of Applied Remote Sensing, 11(1), 016012. https://doi.org/10.1117/1.JRS.11.016012
  • Chander, S., Ganguly, D., Dubey, A., Gupta, P., Singh, R., & Chauhan, P. (2014). Inland water bodies monitoring using satellite altimetry over Indian region. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. https://10.5194/isprsarchives-XL-8-1035-2014
  • Chelton, Dudley B., John C. Ries, Bruce J. Haines, Lee-Lueng Fu, & Philip S. Callahan. (2001). Satellite altimetry. In International geophysics, vol. 69, 1–ii. Academic Press. https://doi.org/10.1016/S0074-6142(01)80146-7
  • Chembolu, V., Dubey, A., Gupta, P., Dutta, S., & Singh, R. (2019). Application of satellite altimetry in understanding river–wetland flow interactions of Kosi river. Journal of Earth System Science, 128(4), 89. https://doi.org/10.1007/s12040-019-1099-4
  • Chembolu, V., & Dutta, S. (2018). An entropy based morphological variability assessment of a large braided river. Earth Surface Processes and Landforms, 43(14), 2889–2896. https://doi.org/10.1002/esp.4441
  • Coleman, J. M. (1969). Brahmaputra river: channel processes and sedimentation. Sedimentary Geology, 3(2-3), 129–239. https://doi.org/10.1016/0037-0738(69)90010-4
  • Crétaux, J. F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M.C., Nino, F., Del Rio, R. A., Cazenave, A., & Maisongrande, P. (2011). SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances In Space Research, 47(9), 1497–1507. https://doi.org/10.1016/j.asr.2011.01.004
  • de Oliveira Campos, I., Mercier, F., Maheu, C., Cochonneau, G., Kosuth, P., Blitzkow, D., & Cazenave, A. (2001). Temporal variations of river basin waters from topex/poseidon satellite altimetry. Application to the amazon basin. Comptes Rendus de l’Acad´emie des Sciences-Series IIA-Earth and Planetary Science, 333, 633–643. https://10.5194/isprsarchives-XL-8-1035-2014
  • Duan, Z., & Bastiaanssen, W. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 134, 403–416. https://doi.org/10.1016/j.rse.2013.03.010
  • Dubey, A., Gupta, P., Dutta, S., & Singh, R. (2015a). An improved methodology to estimate river stage and discharge using Jason-2 satellite data. Journal of Hydrology, 529, 1776–1787. https://doi.org/10.1016/j.jhydrol.2015.08.009
  • Dubey, A. K., Gupta, P., Dutta, S., & Kumar, B. (2014). Evaluation of satellite- altimetry derived river stage variation for the braided Brahmaputra river. International journal of remote sensing, 35(23), 7815–7827. https://doi.org/10.1080/01431161.2014.978033
  • Dubey, A. K., Gupta, P., Dutta, S., & Singh, R. P. (2015b). Water level retrieval using SARAL/Altika observations in the braided Brahmaputra river, Eastern India. Marine Geodesy, 38(Suppl. 1), 549–567. https://doi.org/10.1080/01490419.2015.1008156
  • Durand, M., Rodriguez, E., Alsdorf, D. E., & Trigg, M. (2009). Estimating river depth from remote sensing swath interferometry measurements of river height, slope, and width. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 20–31. https://doi.org/10.1109/JSTARS.2009.2033453
  • Dutta, S., & Ghosh, S. (2012). Impact of climate and land use changes on the flood hazard of the middle Brahmaputra reach, india. Journal of Disaster Research, 7(5), 573–581. https://doi.org/10.20965/jdr.2012.p0573
  • Entwistle, N., Heritage, G., & Milan, D. (2018). Recent remote sensing applications for hydro and morphodynamic monitoring and modelling. Earth Surface Processes and Landforms, 43(10), 2283–2291. https://doi.org/10.1002/esp.4378
  • ESA. (2013). European space agency globcover portal. Retrieved September 30, 2013 from: http://due.esrin. esa.int/page_globcover.php
  • Frappart, F., Seyler, F., Martinez, J. M., Leon, J. G., & Cazenave, A. (2005). Floodplain water storage in the Negro river basin estimated from microwave remote sensing of inundation area and water levels. Remote Sensing of Environment, 99(4), 387–399. https://doi.org/10.1016/j.rse.2005.08.016
  • Ghosh, S., & Dutta, S. (2012). Impact of climate change on flood characteristics in Brahmaputra basin using a macro-scale distributed hydrological model. Journal of Earth System Science, 121(3), 637–657. https://doi.org/10.1007/s12040-012-0181-y
  • Gilvear, D., & Bryant, R. (2016). Analysis of remotely sensed data for fluvial geomorphology and river science. Tools in Fluvial Geomorphology, 103–132.
  • Goswami, D. C. (1985). Brahmaputra river, Assam, India: Physiography, basin denudation, and channel aggradation. Water Resources Research, 21(7), 959–978. https://doi.org/10.1029/WR021i007p00959
  • Gupta, P., Dubey, A., Dutta, S., Singh, R., & Chauhan, P. (2015). Monitoring major inland water bodies of India using SARAL/altika: Some results. National Natural Resources Management System Bulletin, 39, 91–96.
  • Hohenthal, J., Alho, P., Hyyppä, J., & Hyyppä, H. (2011). Laser scanning applications in fluvial studies. Progress in Physical Geography, 35(6), 782–809. https://doi.org/10.1177/0309133311414605
  • Horritt, M., & Bates, P. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 268(1–4), 87–99. https://doi.org/10.1016/S0022-1694(02)00121-X
  • Jarihani, A. A., Callow, J. N., Johansen, K., & Gouweleeuw, B. (2013). Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. Journal of Hydrology, 505, 78–90. https://doi.org/10.1016/j.jhydrol.2013.09.010
  • Jarrett, R. D. (1990). Hydrologic and hydraulic research in mountain rivers 1. JAWRA Journal of the American Water Resources Association, 26(3), 419–429. https://doi.org/10.1111/j.1752-1688.1990.tb01381.x
  • Jiang, L., Madsen, H., & Bauer-Gottwein, P. (2019). Simultaneous calibration of multiple hydrodynamic model parameters using satellite altimetry observations of water surface elevation in the Songhua river. Remote Sensing of Environment, 225, 229–247. https://doi.org/10.1016/j.rse.2019.03.014
  • Karmaker, T., & Dutta, S. (2010). Generation of synthetic seasonal hydrographs for a large river basin. Journal of Hydrology, 381(3-4), 287–296. https://doi.org/10.1016/j.jhydrol.2009.12.001
  • Karmaker, T., & Dutta, S. (2011). Erodibility of fine soil from the composite river bank of Brahmaputra in India. Hydrological Processes, 25(1), 104–111. https://doi.org/10.1002/hyp.7826
  • Karmaker, T., Medhi, H., & Dutta, S. (2017). Study of channel instability in the braided Brahmaputra river using satellite imagery. Current Science, 00113891, 112. https://10.18520/cs/v112/i07/1533-1543
  • Kasvi, E., Alho, P., Lotsari, E., Wang, Y., Kukko, A., Hyypp¨a, H., & Hyyppä, J. (2015). Two-dimensional and three-dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: sensitivity and functionality. Hydrological processes, 29(6), 1604–1629. https://doi.org/10.1002/hyp.10277
  • Khan, N. I., & Islam, A. (2003). Quantification of erosion patterns in the Brahmaputra–Jamuna river using geographical information system and remote sensing techniques. Hydrological Processes, 17(5), 959–966. https://doi.org/10.1002/hyp.1173
  • Kouraev, A. V., Zakharova, E. A., Samain, O., Mognard, N. M., & Cazenave, A. (2004). Ob'river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sensing of Environment, 93(1-2), 238–245. https://doi.org/10.1016/j.rse.2004.07.007
  • Lea, D. M., & Legleiter, C. J. (2016). Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone. Geomorphology, 252, 66–79. https://doi.org/10.1016/j.geomorph.2015.05.033
  • Legleiter, C. J. (2012). Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry. Earth Surface Processes and Landforms, 37(5), 499–518. https://doi.org/10.1002/esp.2262
  • Legleiter, C. J., Kinzel, P. J., & Nelson, J. M. (2017). Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information. Journal of Hydrology, 554, 490–506. https://doi.org/10.1016/j.jhydrol.2017.09.004
  • Leon, J. G., Calmant, S., Seyler, F., Bonnet, M. P., Cauhopé, M., Frappart, F., Filizola, N., & Fraizy, P. (2006). Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges. Journal of hydrology, 328(3–4), 481-496. https://doi.org/10.1016/j.jhydrol.2005.12.006
  • Mishra, S. K., Sarkar, R., Dutta, S., & Panigrahy, S. (2008). A physically based hydrological model for paddy agriculture dominated hilly watersheds in tropical region. Journal of Hydrology, 357(3-4), 389–404. https://doi.org/10.1016/j.jhydrol.2008.05.019
  • Marcus, W. A., & Fonstad, M. A. (2010). Remote sensing of rivers: The emergence of a subdiscipline in the river sciences. Earth Surface Processes and Landforms, 35(15), 1867–1872. https://doi.org/10.1002/esp.2094
  • Maswood, M., & Hossain, F. (2016). Advancing river modelling in ungauged basins using satellite remote sensing: the case of the Ganges–Brahmaputra–Meghna basin. International Journal of River Basin Management, 14(1), 103–117. https://doi.org/10.1080/15715124.2015.1089250
  • Morvan, H., Knight, D., Wright, N., Tang, X., & Crossley, A. (2008). The concept of roughness in fluvial hydraulics and its formulation in 1d, 2d and 3d numerical simulation models. Journal of Hydraulic Research, 46(2), 191–208. https://doi.org/10.1080/00221686.2008.9521855
  • Nachtergaele, F., van Velthuizen, H., Verelst, L., Batjes, N. H., Dijkshoorn, K., van Engelen, V. W. P., … Montanarela, L. (2010). The harmonized world soil database. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010 (pp. 34–37).
  • Niroumand-Jadidi, M., Vitti, A., & Lyzenga, D. R. (2018). Multiple Optimal Depth Predictors Analysis (MODPA) for river bathymetry: Findings from spectroradiometry, simulations, and satellite imagery. Remote Sensing of Environment, 218, 132–147. https://doi.org/10.1016/j.rse.2018.09.022
  • Niroumand-Jadidi, M., Pahlevan, N., & Vitti, A. (2019). Mapping substrate types and compositions in shallow streams. Remote Sensing, 11(3), 262. https://doi.org/10.3390/rs11030262
  • Pai, D., Sridhar, L., Rajeevan, M., Sreejith, O., Satbhai, N., & Mukhopad- hyay, B. (2014). Development of a new high spatial resolution (0.25 0.25) long period (1901–2010) daily gridded rainfall data set over india and its comparison with existing data sets over the region. Mausam, 65, 1–18.
  • Papa, F., Bala, S. K., Pandey, R. K., Durand, F., Gopalakrishna, V., Rahman, A., & Rossow, W. B. (2012). Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal. Journal of Geophysical Research: Oceans, 117. https://doi.org/10.1029/2012JC008158
  • Papa, F., Durand, F., Rossow, W. B., Rahman, A., & Bala, S. K. (2010). Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra river and its seasonal to Interannual variations from 1993 to 2008. Journal of Geophysical Research: Oceans, 115. https://doi.org/10.1029/2009JC006075
  • Pedinotti, V., Boone, A., Ricci, S., Biancamaria, S., & Mognard, N. (2014). Assimilation of satellite data to optimize large-scale hydrological model parameters: A case study for the SWOT mission. Hydrology and Earth System Sciences, 18(11), 4485–4507. https://doi.org/10.5194/hess-18-4485-2014
  • Rajyalakshmi, N., & Dutta, S. (2006). Regionalization of rainfall–runoff processes in rice agriculture dominated watersheds. Water Science and Technology, 53(10), 131–139. https://doi.org/10.2166/wst.2006.306
  • Richardson, W. R., & Thorne, C. R. (2001). Multiple thread flow and channel bifurcation in a braided river: Brahmaputra–Bamuna river. Bangladesh. Geomorphology, 38(3-4), 185–196. https://doi.org/10.1016/S0169-555X(00)00080-5
  • Roux, E., Santos da Silva, J., Cesar Vieira Getirana, A., Bonnet, M. P., Calmant, S., Martinez, J. M., & Seyler, F. (2010). Producing time series of river water height by means of satellite radar altimetry—a comparative study. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 55(1), 104–120. https://doi.org/10.1080/02626660903529023
  • Sarkar, R., Dutta, S., & Panigrahy, S. (2008). Characterizing overland flow on a preferential infiltration dominated hillslope: Case study. Journal of Hydrologic Engineering, 13(7), 563–569. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(563)
  • Sarker, M. H., Huque, I., Alam, M., & Koudstaal, R. (2003). Rivers, chars and char dwellers of Bangladesh. International Journal of River Basin Management, 1(1), 61–80. https://doi.org/10.1080/15715124.2003.9635193
  • Sarker, M. H., Thorne, C. R., Aktar, M. N., & Ferdous, M. R. (2014). Morphodynamics of the Brahmaputra–Jamuna river. Bangladesh. Geomorphology, 215, 45–59. https://doi.org/10.1016/j.geomorph.2013.07.025
  • Sarma, J. (2005). Fluvial process and morphology of the Brahmaputra river in Assam. India. Geomorphology, 70(3-4), 226–256. https://doi.org/10.1016/j.geomorph.2005.02.007
  • Sarma, J., & Phukan, M. (2006). Bank erosion and bankline migration of the Brahmaputra river in assam during the twentieth century. Journal Geological Society of India, 68, 1023.
  • Siddique-E-Akbor, A. H. M., Hossain, F., Lee, H., & Shum, C. K. (2011). Inter-comparison study of water level estimates derived from hydrodynamic–hydrologic model and satellite altimetry for a complex deltaic environment. Remote Sensing of Environment, 115(6), 1522–1531. https://doi.org/10.1016/j.rse.2011.02.011
  • Singh, V., Sharma, N., & Ojha, C. S. P. (2004). The Brahmaputra basin water resources. Springer Science & Business Media, 47. https://doi.org/10.1007/978-94-017-0540-0
  • Thorne, C. R., Russell, A. P., & Alam, M. K. (1993). Planform pattern and channel evolution of the brahmaputra river, bangladesh. Geological Society, London, Special Publications, 75(1), 257–276. https://doi.org/10.1144/GSL.SP.1993.075.01.16
  • Timbadiya, P. V., Patel, P. L., & Porey, P. D. (2011). Calibration of hec-ras model on prediction of flood for lower tapi river, India. Journal of Water Resource and Protection, 3(11), 805. https://doi.org/10.4236/jwarp.2011.311090
  • Verdin, K., Hall, F,, Collatz, G., Meeson, B., Los, S., Brown de Colstoun, E., & Landis, D. (2011). ISLSCP II hydro1k elevation-derived products. ORNL DAAC.
  • Verron, J., Bonnefond, P., Aouf, L., Birol, F., Bhowmick, S. A., Calmant, S., Conchy, T, Crétaux, J.-F., Dibarboure, G., Dubey, A.K., Faugère, Y., Guerreiro, K., Gupta, P.K., Hamon, M., Jebri, F., Kumar, R., Morrow, R., Pascual, A., Pujol, M.-I., … & Faugère, Y. (2018). The benefits of the Ka-band as evidenced from the SARAL/AltiKa altimetric mission: Scientific applications. Remote Sensing, 10(2), 163. https://doi.org/10.3390/rs10020163
  • Verron, J., Sengenes, P., Lambin, J., Noubel, J., Steunou, N., Guillot, A., Picot, N., Coutin-Faye, S., Sharma, R., Gairola, R. M. and Murthy, D. R., Richman, J. G., Griffin, D., Pascual, A., Rémy, F., & Gupta, P. K. (2015). The SARAL/AltiKa altimetry satellite mission. Marine Geodesy, 38(sup1), 2–21. https://doi.org/10.1080/01490419.2014.1000471
  • Vidal, J. P., Moisan, S., Faure, J. B., & Dartus, D. (2007). River model calibration, from guidelines to operational support tools. Environmental Modelling & Software, 22(11), 1628–1640. https://doi.org/10.1016/j.envsoft.2006.12.003
  • Wahr, J. M. (1985). Deformation induced by polar motion. Journal of Geophysical Research: Solid Earth, 90(B11), 9363–9368. https://doi.org/10.1029/JB090iB11p09363
  • Woldemichael, A. T., Degu, A. M., Siddique-E-Akbor, A. H. M., & Hossain, F. (2010). Role of land–water classification and Manning's roughness parameter in space-borne estimation of discharge for braided rivers: A case study of the Brahmaputra River in Bangladesh. IEEE Journal of Selected topics in Applied Earth Observations and Remote Sensing, 3(3), 395–403. https://doi.org/10.1109/JSTARS.2010.2050579
  • Zade, S. D. M. (2003). Rise-a distributed hydrologic model for rice agriculture: Concept and evaluation. Watershed Hydrology, 6, 240.
  • Zakharova, E. A., Kouraev, A. V., Cazenave, A., & Seyler, F. (2006). Amazon River discharge estimated from TOPEX/Poseidon altimetry. Comptes Rendus Geoscience, 338(3), 188–196. https://doi.org/10.1016/j.crte.2005.10.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.