489
Views
6
CrossRef citations to date
0
Altmetric
Articles

Drag coefficient of in-line emergent vegetation in open channel flow

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 253-263 | Received 11 Mar 2021, Accepted 27 Jun 2021, Published online: 06 Sep 2021

References

  • Aberle, J., & Järvelä, J. (2013). Flow resistance of emergent rigid and flexible floodplain vegetation. Journal of Hydraulic Research, 51(1), 33–45. https://doi.org/10.1080/00221686.2012.754795
  • Armanini, A., & Cavedon, V. (2019). Bed-load through emergent vegetation. Advances in Water Resources, 129, 250–259. https://doi.org/10.1016/j.advwatres.2019.05.021
  • Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N. S., & Singh, R. (2008). Estimation of monthly solar radiation from measured air temperature extremes. Agricultural and Forest Meteorology, 148(11), 1707–1718. https://doi.org/10.1016/j.agrformet.2008.06.002
  • Baptist, M. J., Babovic, V., Rodríguez Uthurburu, J., Keijzer, M., Uittenbogaard, R. E., Mynett, A., & Verwey, A. (2007). On inducing equations for vegetation resistance. Journal of Hydraulic Research, 45(4), 435–450. https://doi.org/10.1080/00221686.2007.9521778
  • Barnes, H. H. (1967). Roughness characteristics of natural channels U.S. Geological Survey Water-Supply Paper. Washington: United States Government Printing Office, paper 1849, 213p.
  • Ben Meftah, M., & Mossa, M. (2013). Prediction of channel flow characteristics through square arrays of emergent cylinders. Physics of Fluids, 25(4), 045102. https://doi.org/10.1063/1.4802047
  • Ben Meftah, M., & Mossa, M. (2016). A modified log-law of flow velocity distribution in partly obstructed open channels. Environmental Fluid Mechanics, 16(2), 453–479. https://doi.org/10.1007/s10652-015-9439-7
  • Box, W., Västilä, K., & Järvelä, J. (2019). The interplay between flow field, suspended sediment concentration, and net deposition in a channel with flexible bank vegetation. Water, 11(11), 2250. https://doi.org/10.3390/w11112250
  • Caroppi, G., Gualtieri, P., Fontana, N., & Giugni, M. (2018). Vegetated channel flows: Turbulence anisotropy at flow–rigid canopy interface. Geosciences, 8(7), 259. https://doi.org/10.3390/geosciences8070259
  • Cheng, N. (2013). Calculation of drag coefficient for arrays of emergent circular cylinders with pseudofluid model. Journal of Hydraulic Engineering, 139(6), 602–611. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000722
  • Cheng, N., & Nguyen, H. (2011). Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. Journal of Hydraulic Engineering, 137(9), 995–1004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000377
  • Cheng, N. S., Hui, C. L., Wang, X., & Tan, S. K. (2019). Laboratory study of porosity effect on drag induced by circular vegetative patch. Journal of Engineering Mechanics, 145, 04019046. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001626
  • Curran, J. C., & Hession, W. C. (2013). Vegetative impacts on hydraulics and sediment processes across the fluvial system. Journal of Hydrology, 505, 364–376. https://doi.org/10.1016/j.jhydrol.2013.10.013
  • De Serio, F., Ben Meftah, M., Mossa, M., & Termini, D. (2018). Experimental investigation on dispersion mechanisms in rigid and flexible vegetated beds. Advances in Water Resources, 120, 98–113. https://doi.org/10.1016/j.advwatres.2017.08.005
  • D’Ippolito, A., Calomino, F., Alfonsi, G., & Lauria, A. (2021). Flow resistance in open channel due to vegetation at reach scale: A review. Water, 13(2), 116. https://doi.org/10.3390/w13020116
  • D’Ippolito, A., Ferrari, E., Iovino, F., Nicolaci, A., & Veltri, A. (2013). Reforestation and land use change in a drainage basin of Southern Italy. iForest - Biogeosciences and Forestry, 6(4), 175–182. https://doi.org/10.3832/ifor0741-006
  • D’Ippolito, A., Lauria, A., Alfonsi, G., & Calomino, F. (2019). Investigation of flow resistance exerted by rigid emergent vegetation in open channel. Acta Geophysica, 67(3), 971–986. https://doi.org/10.1007/s11600-019-00280-8
  • Ergun, S. (1952). Fluid flow through packed columns. Journal of Chemical Engineering Progress, 48(2), 89–94.
  • Errico, A., Lama, G. F. C., Francalanci, S., Chirico, G. B., Solari, L., & Preti, F. (2019). Flow dynamics and turbulence patterns in a drainage channel colonized by common reed (Phragmites australis) under different scenarios of vegetation management. Ecological Engineering, 133, 39–52. https://doi.org/10.1016/j.ecoleng.2019.04.016
  • Ishikawa, Y., Mizuhara, K., & Ashida, S. (2000). Effect of density of trees on drag exerted on trees in river channels. Journal of Forest Research, 5(4), 271–279. https://doi.org/10.1007/BF02767121
  • Kim, S. J., & Stoesser, T. (2011). Closure modeling and direct simulation of vegetation drag in flow through emergent vegetation. Water Resources Research, 47(10), W10511. https://doi.org/10.1029/2011WR010561
  • Kitsikoudis, V., Yagci, O., & Kirca, V. S. O. (2020). Experimental analysis of flow and turbulence in the wake of neighboring emergent vegetation patches with different densities. Environmental Fluid Mechanics, 20(6), 1417–1439. https://doi.org/10.1007/s10652-020-09746-6
  • Kothyari, U. C., Hayashi, K., & Hashimoto, H. (2009). Drag coefficient of unsubmerged rigid vegetation stems in open channel flows. Journal of Hydraulic Research, 47(6), 691–699. https://doi.org/10.3826/jhr.2009.3283
  • Lama, G. F. C., Crimaldi, M., Pasquino, V., Padulano, R., & Chirico, G. B. (2021). Bulk drag predictions of riparian arundo donax stands through UAV-acquired multispectral images. Water, 13(10), 1333. https://doi.org/10.3390/w13101333
  • Li, D., Huai, W., & Liu, M. (2020). Investigation of the flow characteristics with one-line emergent canopy patches in open channel. Journal of Hydrology, 590, 125248. https://doi.org/10.1016/j.jhydrol.2020.125248
  • Li, R. M., & Shen, H. W. (1973). Effect of tall vegetations on flow and sediment. Journal of the Hydraulics Division, 99(5), 793–814. https://doi.org/10.1061/JYCEAJ.0003647
  • Li, W., Wang, D., Jiao, J., & Yang, K. (2019). Effects of vegetation patch density on flow velocity characteristics in an open channel. Journal of Hydrodynamics, https://doi.org/10.1007/s42241-018-0086-6
  • Liu, C., & Shan, Y. (2019). Analytical model for predicting the longitudinal profiles of velocities in a channel with a model vegetation patch. Journal of Hydrology, 576, 561–574. https://doi.org/10.1016/j.jhydrol.2019.06.076
  • Liu, D., Diplas, P., Fairbanks, J. D., & Hodges, C. C. (2008). An experimental study of flow through rigid vegetation. Journal of Geophysical Research, 113(F4), F04015. https://doi.org/10.1029/2008JF001042
  • Liu, M. Y., Huai, W. X., Yang, Z. H., & Zeng, Y. H. (2020). A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows. Advances in Water Resources, 140, 103582. https://doi.org/10.1016/j.advwatres.2020.103582
  • Liu, X., & Zeng, Y. (2016). Drag coefficient for rigid vegetation in subcritical open channel. Procedia Engineering, 154, 1124–1131. https://doi.org/10.1016/j.proeng.2016.07.522
  • Liu, X., & Zeng, Y. (2017). Drag coefficient for rigid vegetation in subcritical open-channel flow. Environmental Fluid Mechanics, 17(5), 1035–1050. https://doi.org/10.1007/s10652-017-9534-z
  • Marjoribanks, T. I., Hardy, R. J., Lane, S. N., & Parsons, D. R. (2014). High-resolution numerical modelling of flow—vegetation interactions. Journal of Hydraulic Research, 52(6), 775–793. https://doi.org/10.1080/00221686.2014.948502
  • Mulahasan, S., & Stoesser, T. (2017). Flow resistance of in-line vegetation in open channel flow. International Journal of River Basin Management, 15(3), 329–334. https://doi.org/10.1080/15715124.2017.1307847
  • Nepf, H. M. (1999). Drag, turbulence and diffusion in flow through emergent vegetation. Water Resources Research, 35(2), 479–489. https://doi.org/10.1029/1998WR900069
  • Novak, P., & Čábelka, J. (1981). Models in hydraulic engineering: Physical principles and design applications. Pitman Publishing Ltd.
  • Ozan, A. Y. (2018). Flow structure at the downstream of a one-line riparian emergent tree along the floodplain edge in a compound open-channel flow. Journal of Hydrodynamics, 30(3), 470–480. https://doi.org/10.1007/s42241-018-0052-3
  • Pasquino, V., & Gualtieri, P. (2017). Flow resistance of submerged rigid vegetation: Focus and validation on two layer approach. Proceedings of the 37th IAHR World Congress, Kuala Lampur, Malaysia, 13–18 August; pp. 2502–2510.
  • Peel, M. C. (2009). Hydrology: Catchment vegetation and runoff. Progress in Physical Geography: Earth and Environment, 33(6), 837–844. https://doi.org/10.1177/0309133309350122
  • Penna, N., Coscarella, F., D’Ippolito, A., & Gaudio, R. (2020a). Anisotropy in the free stream region of turbulent flows through emergent rigid vegetation on rough beds. Water, 12(9), 2464. https://doi.org/10.3390/w12092464
  • Penna, N., Coscarella, F., D’Ippolito, A., & Gaudio, R. (2020b). Bed roughness effects on the turbulence characteristics of flows through emergent rigid vegetation. Water, 12(9), 2401. https://doi.org/10.3390/w12092401
  • Petryk, S., & Bosmajian, G. (1975). Analysis of flow through vegetation. Journal of the Hydraulics Division, 101(7), 871–884. https://doi.org/10.1061/JYCEAJ.0004397
  • Rameshwaran, P., & Shiono, K. (2007). Quasi two dimensional model for straight overbank flows through emergent vegetation on floodplains. Journal of Hydraulic Research, 45(3), 302–315. https://doi.org/10.1080/00221686.2007.9521765
  • Rowiński, P. M., Västilä, K., Aberle, J., Järvelä, J., & Kalinowska, M. (2018). How vegetation can aid in coping with river management challenges: A brief review. Ecohydrology & Hydrobiology, 18(4), 345–354. https://doi.org/10.1016/j.ecohyd.2018.07.003
  • Shields, D. F., Coulton, K. G., & Nepf, H. (2017). Representation of vegetation in two-dimensional hydrodynamic models. Journal of Hydraulic Engineering, 143(8), 1–9. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001320
  • Shields, F. D., & Gippel, C. J. (1995). Prediction of effects of woody debris removal on flow resistance. Journal of Hydraulic Engineering, 121(4), 341–354. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:4(341)
  • Shiono, K., & Knight, D. W. (1988). Two dimensional analytical solution for a compound channel. In Y. Iwasa, N. Tamai, and A. Wada (Eds.), Proceedings of 3 International Symposium on Refined Flow Modelling and Turbulence Measurements (pp. 591–599). Universal Academy Press.
  • Shiono, K., & Knight, D. W. (1991). Turbulent open-channel flows with variable depth across the channel. Journal of Fluid Mechanics, 222(-1), 617–646. https://doi.org/10.1017/S0022112091001246
  • Shiono, K., Takeda, M., Yang, K., Sugihara, Y., & Ishigaki, T. (2012). Modeling of vegetated rivers for inbank and overbank flows. In Proceedings of the International Conference on Fluvial Hydraulics: River Flow, September 5–7, San Jose, Costa Rica (pp. 263–269).
  • Sonnenwald, F., Stovin, V., & Guymer, I. (2018). Estimating drag coefficient for arrays of rigid cylinders representing emergent vegetation. Journal of Hydraulic Research,, 57(4), 591–597. https://doi.org/10.1080/00221686.2018.1494050
  • Stoesser, T., Kim, S. J., & Diplas, P. (2010). Turbulent flow through idealized emergent vegetation. Journal of Hydraulic Engineering, 136(12), 1003–1017. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000153
  • Stone, M. C., & Shen, H. T. (2002). Hydraulic resistance of flow in channels with cylindrical roughness. Journal of Hydraulic Engineering, 128(5), 500–506. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)
  • Sun, X., & Shiono, K. (2009). Flow resistance of one-line emergent vegetation along the floodplain edge of a compound open channel. Advances in Water Resources, 32(3), 430–438. https://doi.org/10.1016/j.advwatres.2008.12.004
  • Tang, C., Lei, J., & Nepf, H. M. (2019). Impact of vegetation-generated turbulence on the critical, near-bed, wave-velocity for sediment resuspension. Water Resources Research, 55(7), 5904–5917. https://doi.org/10.1029/2018WR024335
  • Tanino, Y., & Nepf, H. (2008). Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. Journal of Hydraulic Engineering, 134(1), 34–41. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(34)
  • Termini, D. (2019). Turbulent mixing and dispersion mechanisms over flexible and dense vegetation. Acta Geophysica, 67(3), 961–970. https://doi.org/10.1007/s11600-019-00272-8
  • Terrier, B., Peltier, Y., Shiono, K., Paquier, A., & Rivièr, N. (2011). Influence of one-line vegetation on the edge of the floodplain on velocity and boundary shear stress distributions in compound channel. In 34th IAHR World Congress, 26/06/2011-01/07/2011, (p. 8). Brisbane, Australia. Brisbane: Engineers Australia.
  • Tinoco, R. O., & Cowen, E. A. (2013). The direct and indirect measurement of boundary stress and drag on individual and complex arrays of elements. Experiments in Fluids, 54(4), 1509. https://doi.org/10.1007/s00348-013-1509-3
  • Vargas-Luna, A., Crosato, A., & Uijttewaal, W. S. J. (2015). Effects of vegetation on flow and sediment transport: Comparative analyses and validation of predicting models. Earth Surface Processes and Landforms, 40(2), 157–176. https://doi.org/10.1002/esp.3633
  • Västilä, K., & Järvelä, J. (2018). Characterizing natural riparian vegetation for modeling of flow and suspended sediment transport. Journal of Soils and Sediments, 18(10), 3114–3130. https://doi.org/10.1007/s11368-017-1776-3
  • Wang, H., Tang, H. W., Yuan, S. Y., Lv, S. Q., & Zhao, X. Y. (2014). An experimental study of the incipient bed shear stress partition in mobile bed channels filled with emergent rigid vegetation. Science China Technological Sciences, 57(6), 1165–1174. https://doi.org/10.1007/s11431-014-5549-6
  • Yagci, O., Celik, M. F., Kitsikoudis, V., Ozgur Kirca, V. S., Hodoglu, C., Valyrakis, M., Zaide Duran, Z., & Kaya, S. (2016). Scour patterns around isolated vegetation elements. Advances in Water Resources, 97, 251–265. https://doi.org/10.1016/j.advwatres.2016.10.002
  • Yan, C., Shan, Y., Sun, W., Liu, C., & Liu, X. (2020). Modeling the longitudinal profiles of streamwise velocity in an open channel with a model patch of vegetation. Environmental Fluid Mechanics, 20(6), 1441–1462. https://doi.org/10.1007/s10652-020-09747-5
  • Yang, J. Q., Chung, H., & Nepf, H. M. (2016). The onset of sediment transport in vegetated channels predicted by turbulent kinetic energy. Geophysical Research Letters, 43(21), 11261–11268. https://doi.org/10.1002/2016GL071092
  • Yang, J. Q., Kerger, F., & Nepf, H. M. (2015). Estimation of the bed shear stress in vegetated and bare channels with smooth beds. Water Resources Research, 51(5), 3647–3663. https://doi.org/10.1002/2014WR016042
  • Yang, J. Q., & Nepf, H. M. (2019). Impact of vegetation on bed load transport rate and bedform characteristics. Water Resources Research, 55(7), 6109–6124. https://doi.org/10.1029/2018WR024404
  • Yilmazer, D., Ozan, A. Y., & Cihan, K. (2018). Flow characteristics in the wake region of a finite-length vegetation patch in a partly vegetated channel. Water, 10(4), 459. https://doi.org/10.3390/w10040459
  • Zeng, Y. H., & Huai, W. X. (2014). Estimation of longitudinal dispersion coefficient in rivers. Journal of Hydro-Environment Research, 8(1), 2–8. https://doi.org/10.1016/j.jher.2013.02.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.