306
Views
3
CrossRef citations to date
0
Altmetric
Articles

Baseflow and water resilience variability in two water management units in southeastern Brazil

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 387-400 | Received 29 Nov 2020, Accepted 27 Oct 2021, Published online: 20 Jan 2022

References

  • Ali, I., Famiglietti, J., & Mclelland, J. (2019). Applications of satellite Remote sensing to water governance and the mitigation of climate change effects. The University of Alabama, 24. https://doi.org/10.31237/osf.io/49nre
  • Alley, W. M. (2016). Drought-proofing groundwater. Groundwater, 54(3), 309–309. https://doi.org/10.1111/gwat.12418
  • Anache, J. A. A., Wendland, E., Rosalem, L. M. P., Youlton, C., & Oliveira, P. T. S. (2019). Hydrological trade-offs due to different land covers and land uses in the Brazilian Cerrado, Hydrology and Earth System Sciences, 23, 1263–1279. https://doi.org/10.5194/hess-23-1263-2019
  • Berguería, S. (2017). Package ‘SPEI’.
  • Biswal, B., & Kumar, D. N. (2014). Study of dynamic behaviour of recession curves. Hydrological Processes, 28(3), 784–792. https://doi.org/10.1002/hyp.9604
  • Biswal, B., & Marani, M. (2014). Advances in water resources ‘universal’ recession curves and their geomorphological interpretation. Advances in Water Resources, 65, 34–42. https://doi.org/10.1016/j.advwatres.2014.01.004
  • Brutsaert, W. (2005). Hydrology : an introduction. Cambridge University Press.
  • Brutsaert, W. (2008). Long-term groundwater storage trends estimated from streamflow records: Climatic perspective. Water Resources Research, 44(2), 1–7. https://doi.org/10.1029/2007WR006518
  • Brutsaert, W. (2012). Are the North American deserts expanding? Some climate signals from groundwater storage conditions. Ecohydrology, 5(5), 541–549. https://doi.org/10.1002/eco.263
  • Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13(3), 637–643. https://doi.org/10.1029/WR013i003p00637
  • CETESB, C.A. do E. de S.P. (2018). Qualidade das águas interiores no estado de São Paulo 2017.
  • Chapman, T., & Maxwell, A. (1996, May). Baseflow separation – Comparison of numerical methods with tracer experiments. In 23rd Hydrology and Water Resources Symposium (pp. 539–545).
  • Chiew, F., & Siriwardena, L. (2005). TREND – User guide. Manual, Guia, Norma, 29.
  • Clarvis, M. H., Allan, A., & Hannah, D. M. (2014). Water, resilience and the law: From general concepts and governance design principles to actionable mechanisms. Environmental Science and Policy, 43, 98–110. https://doi.org/10.1016/j.envsci.2013.10.005
  • Coelho, C. A. S., Cardoso, D. H. F., & Firpo, M. A. F. (n.d.). A seca de 2013 a 2015 na região sudeste do Brasil.
  • Collischonn, W., & Fan, F. M. (2013). Defining parameters for Eckhardt’s digital baseflow filter. Hydrological Processes, 27(18), 2614–2622. https://doi.org/10.1002/hyp.9391
  • Coutinho, R. M., Kraenkel, R. A., & Prado, P. I. (2015). Catastrophic regime shift in water reservoirs and São Paulo water supply crisis. PLOS ONE, 10(9), 1–14. https://doi.org/10.1371/journal.pone.0138278
  • CPRM, S.G. do B. (2006). Mapa Geológico e Litoestratigráfico do Estado de São Paulo: escala 1:750.000.
  • Cunha, A. P. M. A., Zeri, M., Leal, K. D., Costa, L., Cuartas, L. A., Marengo, J. A., Tomasella, J., Vieira, R. M., Barbosa, A. A., Cunningham, C., Cal Garcia, J. V., Broedel, E., Alvalá, R., & Ribeiro-Neto, G. (2019). Extreme drought events over Brazil from 2011 to 2019. Atmosphere, 10(11). https://doi.org/10.3390/atmos10110642
  • DAEE, D. de Á. e E.E. (2020). DAEE: Banco de Dados Hidrológicos [online]. http://www.hidrologia.daee.sp.gov.br/.
  • DAEE, D. de Á. e E.E., IG, I.G., IPT, I. de P.T., & CPRM, S.G. do B. (2005). Mapa de águas subterrâneas do Estado de São Paulo escala 1:1.000.000: nota explicativa.
  • Dierauer, J., & Whitfield, P. (2018). Daily Streamflow Trend and Change Point Screening.
  • Doble, R. C., & Crosbie, R. S. (2017). Review: Current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater. Hydrogeology Journal, 25(1), 3–23. https://doi.org/10.1007/s10040-016-1470-3
  • Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19(2), 507–515. https://doi.org/10.1002/hyp.5675
  • Falkenmark, M., Wang-Erlandsson, L., & Rockström, J. (2019). Understanding of water resilience in the anthropocene. Journal of Hydrology X, 2, 100009. https://doi.org/10.1016/j.hydroa.2018.100009
  • Frederice, A., & Brandão, J. L. B. (2016). Efeito do sistema cantareira sobre o regime de vazões na bacia do rio piracicaba. Revista Brasileira de Recursos Hidricos, 21(4), 797–810. https://doi.org/10.1590/2318-0331.011615150
  • Gesualdo, G., Oliveira, P., Rodrigues, D., & Gupta, H. (2019). Assessing water security in the Sao Paulo metropolitan region under projected climate change. Hydrology And Earth System Sciences, 23(12), 4955–4968. https://doi.org/10.5194/hess-23-4955-2019
  • Guzmám, D. A., Mohor, G. S., Taffarello, D., & Mendiondo, E. M. (2017). Economic impacts of drought risks for water utilities through severity-duration-frequency framework under climate change scenarios. Hydrology and Earth System Sciences Discussions, 1–39. https://doi.org/10.5194/hess-2017-615
  • Hall, F. R. (1968). Base-flow recessions—A review. Water Resources Research, 4(5), 973–983. https://doi.org/10.1029/WR004i005p00973
  • Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20. https://doi.org/10.1029/WR018i001p00014
  • Hernandes, T. A. D., Bufon, V. B., & Seabra, J. E. A. (2014). Water footprint of biofuels in Brazil: Assessing regional differences. Biofuels, Bioproducts and Biorefining, 8(2), 241–252. https://doi.org/10.1002/bbb.1454
  • Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., & Tan, J. (2019). GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center (GES DISC) [online].
  • IBGE, I.B. de G. e E. (2020). Monitoramento da Cobertura e Uso da Terra.
  • Jasechko, S. (2019). Global isotope hydrogeology—Review. Reviews of Geophysics, 57(3), 835–965. https://doi.org/10.1029/2018RG000627
  • Keyantash, J. (2018). The climate data guide: Standardized Precipitation Index (SPI).
  • Keys, P. W., Porkka, M., Wang-Erlandsson, L., Fetzer, I., Gleeson, T., & Gordon, L. J. (2019). Invisible water security: Moisture recycling and water resilience. Water Security, 8(October), 100046. https://doi.org/10.1016/j.wasec.2019.100046
  • Li, L., Maier, H. R., Partington, D., Lambert, M. F., & Simmons, C. T. (2014). Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs. Environmental Modelling and Software, 54, 39–52. https://doi.org/10.1016/j.envsoft.2013.12.011
  • Lott, D. A., & Stewart, M. T. (2016). Base flow separation: A comparison of analytical and mass balance methods. Journal of Hydrology, 535, 525–533. https://doi.org/10.1016/j.jhydrol.2016.01.063
  • Marengo, J. A., Nobre, C. A., Seluchi, M. E., Cuartas, A., Alves, L. M., Mendiondo, E. M., Obregón, G., & Sampaio, G. (2015). A seca e a crise hídrica de 2014-2015 em São Paulo. Revista USP, 106(106), 31–44. https://doi.org/10.11606/issn.2316-9036.v0i106p31-44
  • Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the Ninth Conference on Applied Climatology. American Metereological Society.
  • Milani, E. J. (2004). Comentários sobre a origem e evolução tectônica da Bacia do Paraná. In V. MAantesso-Neto, A. Bartorelli, C. D. R. Carneiro, & B. B. Brito-Neves (Eds.), Geologia do continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida (pp. 265–279). Editora Beca.
  • NIDIS, N.I.D.I.S. (2020). Climate and drought indices in Python.
  • Nobre, C. A., Marengo, J. A., Seluchi, M. E., Cuartas, L. A., & Alves, L. M. (2016). Some characteristics and impacts of the drought and water crisis in southeastern Brazil during 2014 and 2015. Journal of Water Resource and Protection, 08(02), 252–262. https://doi.org/10.4236/jwarp.2016.82022
  • Owolabi, S. T., Madi, K., Kalumba, A. M., Fanta Alemaw, B. (2020). Assessment of recession flow variability and the surficial lithology impact: A case study of Buffalo River catchment, Eastern Cape, South Africa. Environmental Earth Sciences, 79, 187. https://doi.org/10.1007/s12665-020-08925-4
  • Partington, D., Brunner, P., Simmons, C. T., Werner, A. D., Therrien, R., Maier, H. R., & Dandy, G. C. (2012). Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. Journal of Hydrology, 458–459, 28–39. https://doi.org/10.1016/j.jhydrol.2012.06.029
  • PCJ, A. das bacias. (2018a). Relatório da situação dos recursos hídricos 2018: UGRHI 5 bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí. Fundação Agência das Bacias Hidrográficas dos Rios Piracicaba. Capivari e Jundiaí.
  • PCJ, A. das bacias. (2018b). Primeira Revisão do Plano das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí 2010 a 2020. Relatório Final. Tomo I – Diagnóstico. Fundação Agência das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí.
  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  • R CoreTeam. (2019). R: A language and environment for statistical computing.
  • Ross, A. (2018). Speeding the transition towards integrated groundwater and surface water management in Australia. Journal of Hydrology, 567, e1–e10. https://doi.org/10.1016/j.jhydrol.2017.01.037
  • Rossi, M. (2017). Mapa Pedológico do Estado de São Paulo: revisado e ampliado. Instituto Florestal.
  • SANASA, S. de A. de Á. e S. (2015). Diagnóstico do plano diretor do munícipio de Campinas.
  • Sánchez-Murillo, R., Brooks, E. S., Elliot, W. J., Gazel, E., & Boll, J. (2015). Baseflow recession analysis in the inland pacific northwest of the United States. Hydrogeology Journal, 23(2), 287–303. https://doi.org/10.1007/s10040-014-1191-4
  • Sánchez-Román, R. M., Folegatti, M. V., & Orellana-González, A. M. G. (2009). Water resources situation at piracicaba, capivari and jundiaí watersheds using a dynamic systems model. Engenharia Agrícola, 29(4), 578–590. https://doi.org/10.1590/S0100-69162009000400008
  • São Paulo, G. do E. de. (2010). Mapa de cobertura da terra do Estado de São Paulo na escala de 1:100.000. Secretaria de Meio ambiente do Estado de São Paulo.
  • São Paulo, G. do E. de. (2017). Situação dos recursos hídricos no Estado de São Paulo: 2015 (6th ed.). Coordenadoria de Recursos Hídricos.
  • Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate technique for quantifying groundwater recharge. Hydrogeology Journal, 10(1), 18–39. https://doi.org/10.1007/s10040-001-0176-2
  • Scarpare, F. V., Hernandes, T. A. D., Ruiz-Corrêa, S. T., Kolln, O. T., Gava, G. J. D. C., Dos Santos, L. N. S., & Victoria, R. L. (2016). Sugarcane water footprint under different management practices in Brazil: Tietê/Jacaré watershed assessment. Journal of Cleaner Production, 112, 4576–4584. https://doi.org/10.1016/j.jclepro.2015.05.107
  • Smakhtin, V. U. (2001). Low flow hydrology: A review. Journal of Hydrology, 240(3–4), 147–186. https://doi.org/10.1016/S0022-1694(00)00340-1
  • Stewart, M. K. (2015). Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu catchment, New Zealand. Hydrology and Earth System Sciences, 19(6), 2587–2603. https://doi.org/10.5194/hess-19-2587-2015
  • Tallaksen, L. M. (1995). A review of baseflow recession analysis. Journal of Hydrology, 165(1–4), 349–370. https://doi.org/10.1016/0022-1694(94)02540-R
  • TJ, C. de B.H. das B.T.-J. (2019). Relatório de situação dos recursos hídricos 2019: UGRHI 13 bacias dos rios Tietê – Jacaré.
  • Wang, X. j., Zhang, J. y., Shahid, S., Guan, E. h., Wu, Y. x., Gao, J., & He, R. m. (2016). Adaptation to climate change impacts on water demand. Mitigation and Adaptation Strategies for Global Change, 21(1), 81–99. https://doi.org/10.1007/s11027-014-9571-6
  • WMO. (2012). Standardized Precipitation Index user guide.
  • Zhang, J., Zhang, Y., Song, J., & Cheng, L. (2017). Evaluating relative merits of four baseflow separation methods in eastern Australia. Journal of Hydrology, 549, 252–263. https://doi.org/10.1016/j.jhydrol.2017.04.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.