206
Views
1
CrossRef citations to date
0
Altmetric
Articles

Influence of permeable groins with radial arrangement on local scour around groins: an experimental study

ORCID Icon &
Pages 409-420 | Received 24 May 2021, Accepted 08 Nov 2021, Published online: 03 Dec 2021

References

  • Bora, K., & Kalita, H. M. (2019). Determination of best groyne combination for mitigating bank erosion. Journal of Hydroinformatics, 21(5), 875–892. https://doi.org/10.2166/hydro.2019.151
  • Chiew, Y. M. (1992). Scour protection at bridge piers. Journal of Hydraulic Engineering, 118(9), 1260–1269. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1260)
  • Chooplou, C. A., & Vaghefi, M. (2019). Experimental study of the effect of displacement of vanes submerged at channel width on distribution of velocity and shear stress in a 180 degree bend. Journal of Applied Fluid Mechanics, 12(5), 1417–1428. https://doi.org/10.29252/JAFM.12.05.29329
  • Duan, J. G., He, L., Fu, X., & Wang, Q. (2009). Mean flow and turbulence around experimental spur dike. Advances in Water Resources, 32(12), 1717–1725. https://doi.org/10.1016/j.advwatres.2009.09.004
  • Engelund, F., & Hansen, E. (1966). Investigations of flow in alluvial streams. Acta Polytechechnica Scandanavica Ci–, 35, 5.
  • Ettema, R., & Raudkivi, A. J. (1977). Effect of sediment gradation on clear water scour. Journal of the Hydraulics Division, 103(10), 1209–1218. https://doi.org/10.1061/JYCEAJ.0004853
  • Ezzeldin, R. M. (2019). Numerical and experimental investigation for the effect of permeability of spur dikes on local scour. Journal of Hydroinformatics, 21(2), 335–342. https://doi.org/10.2166/hydro.2019.114
  • Fang, H., Bai, J., He, G., & Zhao, H. (2014). Calculations of nonsubmerged groin flow in a shallow open channel by large-eddy simulation. Journal of Engineering Mechanics, 140(5), 1–11. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000711
  • Ferraro, D., Tafarojnoruz, A., Asce, A. M., Gaudio, R., & Cardoso, A. H. (2013). Effects of pile cap thickness on the maximum scour depth at a complex pier. Journal of Hydraulic Engineering, (May), 482–491. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000704
  • Forgia, G. l., Tokyay, T., Adduce, C., & Constantinescu, G. (2020). Bed shear stress and sediment entrainment potential for breaking of internal solitary waves. Advances in Water Resources, 135, Article 103475. https://doi.org/10.1016/j.advwatres.2019.103475
  • Gaudio, R., Member, I., Marone, S. V., Calomino, F., Member, I., & Marone, S. V. (2012). Combined flow-altering countermeasures against bridge pier scour. Journal of Hydraulic Research, 50(1), 35–43. https://doi.org/10.1080/00221686.2011.649548
  • Gladki, H. (1979). Resistance to flow in alluvial channels with coarse bed materials. Journal of Hydraulic Research, 17(2), 121–128. https://doi.org/10.1080/00221687909499591
  • Glas, M., Glock, K., Tritthart, M., Liedermann, M., & Habersack, H. (2018). Hydrodynamic and morphodynamic sensitivity of a river’s main channel to groyne geometry. Journal of Hydraulic Research, 56(5), 714–726. https://doi.org/10.1080/00221686.2017.1405369
  • Gu, Z.-p., Akahori, R., & Ikeda, S. (2012). Study on the transport of suspended sediment in an open channel flow with permeable spur dikes. International Journal of Sediment Research, 26(1), 96–111. https://doi.org/10.1016/S1001-6279(11)60079-6
  • Higham, J. E., Brevis, W., Keylock, C. J., & Safarzadeh, A. (2017). Using modal decompositions to explain the sudden expansion of the mixing layer in the wake of a groyne in a shallow flow. Advances in Water Resources, 107, 451–459. https://doi.org/10.1016/j.advwatres.2017.05.010
  • Jeon, J., Lee, J. Y., & Kang, S. (2018). Experimental investigation of three-dimensional flow structure and turbulent flow mechanisms around a nonsubmerged spur dike with a low length-to-depth ratio. Water Resources Research, 54(5), 3530–3556. https://doi.org/10.1029/2017WR021582
  • Kadi Abderrezzak, K. E., Moran, A. D., Tassi, P., Ata, R., & Hervouet, J. M. (2016). Modelling river bank erosion using a 2D depth-averaged numerical model of flow and non-cohesive, non-uniform sediment transport. Advances in Water Resources, 93, 75–88. https://doi.org/10.1016/j.advwatres.2015.11.004
  • Kang, J., Yeo, H., & Kim, S. (2011). Experimental study on the flow characteristics around the refraction groyne. Journal of Hydraulic Engineering, 3(8), 842–850. https://doi.org/10.4236/eng.2011.38103
  • Karami, H., Basser, H., Ardeshir, A., & Hosseini, S. H. (2014). Verification of numerical study of scour around spur dikes using experimental data. Water and Environment Journal, 28(1), 124–134. https://doi.org/10.1111/wej.12019
  • Kazemian-Kale-Kale, A., Bonakdari, H., Gholami, A., & Gharabaghi, B. (2020). The uncertainty of the shannon entropy model for shear stress distribution in circular channels. International Journal of Sediment Research, 35(1), 57–68. https://doi.org/10.1016/j.ijsrc.2019.07.001
  • Khosronejad, A., Kang, S., & Sotiropoulos, F. (2012). Experimental and computational investigation of local scour around bridge piers. Advances in Water Resources, 37, 73–85. https://doi.org/10.1016/j.advwatres.2011.09.013
  • Kim, H. S., Nabi, M., Kimura, I., & Shimizu, Y. (2014). Numerical investigation of local scour at two adjacent cylinders. Advances in Water Resources, 70, 131–147. https://doi.org/10.1016/j.advwatres.2014.04.018
  • Koken, M. (2011). Coherent structures around isolated spur dikes at various approach flow angles. Journal of Hydraulic Research, 49(6), 736–743. https://doi.org/10.1080/00221686.2011.616316
  • Koutrouveli, T. I., Dimas, A. A., Fourniotis, N. T., & Demetracopoulos, A. C. (2019). Groyne spacing role on the effective control of wall shear stress in open-channel flow. Journal of Hydraulic Research, 57(2), 167–182. https://doi.org/10.1080/00221686.2018.1478895
  • Kumar, A., & Ojha, C. S. P. (2019). An investigation on mechanisms of equilibrium-stage scour and deposition process around a submerged L-head groyne. ISH Journal of Hydraulic Engineering, 1–13. https://doi.org/10.1080/09715010.2019.1634647
  • Lichtneger, P., Sindelar, C., Schobesberger, J., Hauer, C., & Habersack, H. (2019). Experimental investigation on local shear stress and turbulence intensities over a rough non-uniform bed with and without sediment using 2D particle image velocimetry. International Journal of Sediment Research. https://doi.org/10.1016/j.ijsrc.2019.11.001
  • Liu, X., Landry, B. J., & García, M. H. (2008). Two-dimensional scour simulations based on coupled model of shallow water equations and sediment transport on unstructured meshes. Coastal Engineering, 55(10), 800–810. https://doi.org/10.1016/j.coastaleng.2008.02.012
  • Melville, B. W. (1989). Local scour at bridge abutments. Journal of Hydraulic Engineering, 118(4), 615–631. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(615)
  • Melville, B. W., & Chiew, Y.-m. (1999). Time scale for local scour at bridge piers. Journal of Hydraulic Engineering, 125(1), 59–65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
  • Melville, B. W., & Hadfield, A. C. (1999). Use of sacrificial piles as pier scour countermeasures. Journal of Hydraulic Engineering, 125(11), 1221–1224. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1221)
  • Mostafa, M. M., Ahmed, H. S., Ahmed, A. A., Abdel-Raheem, G. A., & Ali, N. A. (2019). Experimental study of flow characteristics around floodplain single groyne. Journal of Hydro-Environment Research, 22, 1–13. https://doi.org/10.1016/j.jher.2018.08.003
  • Möws, R., & Koll, K. (2019). Roughness effect of submerged groyne fields with varying length, groyne distance, and groyne types. Water, 11(6), Article 1253. https://doi.org/10.3390/w11061253
  • Ning, J., Li, G., & Li, S. (2019). Numerical simulation of the influence of spur dikes spacing on local scour and flow. Applied Sciences, 9(11), Article 2306. https://doi.org/10.3390/app9112306
  • Ota, K., Sato, T., & Nakagawa, H. (2019). Quantification of spatial lag effect on sediment transport around a hydraulic structure using Eulerian–Lagrangian model. Advances in Water Resources, 129, 281–296. https://doi.org/10.1016/j.advwatres.2017.11.009
  • Palermo, M., Pagliara, S., & Bombardelli, F. A. (2020). Theoretical approach for shear-stress estimation at 2d equilibrium scour holes in granular material due to sub vertical plunging jets. Journal of Hydraulic Engineering, 146(4), 1–12. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001703
  • Papanicolaou, A. N., & Fox, J. F. (2008). Investigation of flow and local scour characteristics around a partially submerged permeable barb. World Environmental and Water Resources Congress 2008: Ahupua’a - Proceedings of the World Environmental and Water Resources Congress 2008, Vol. 316, pp. 1–7. https://doi.org/10.1061/40976(316)254
  • Qin, J., Zhong, D., Wu, T., & Wu, L. (2017). Sediment exchange between groin fields and main-stream. Advances in Water Resources, 108, 44–54. https://doi.org/10.1016/j.advwatres.2017.07.015
  • Saghebian, S. M., Roushangar, K., Ozgur Kirca, V. S., & Ghasempour, R. (2020). Modeling total resistance and form resistance of movable bed channels via experimental data and a kernel-based approach. Journal of Hydroinformatics, 1–19. https://doi.org/10.2166/wpt.2019.063
  • Simons, D. B., & Richardson, E. V. (1960). Resistance to flow in alluvial channels. Journal of the Hydraulics Division, 86(5), 5.
  • Slautina, A. V. (1971). Sedimentation of vortex zones with suspended sediment in flow spreading region. LPI Works, 312, 20–26.
  • Suk, H., Nabi, M., Kimura, I., & Shimizu, Y. (2014). Numerical investigation of local scour at two adjacent cylinders. Advances in Water Resources, 70, 131–147. https://doi.org/10.1016/j.advwatres.2014.04.018
  • Tafarojnoruz, A., Asce, A. M., Gaudio, R., & Calomino, F. (2012). Evaluation of flow-altering countermeasures against bridge pier scour. Journal of Hydraulic Engineering, 34(March), 297–305. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000512
  • Taylor, P., Kang, J., Yeo, H., Kim, S., & Ji, U. (2011). Permeability effects of single groin on flow characteristics. Journal of Hydraulic Research, 49(6), 728–735. https://doi.org/10.1080/00221686.2011.614520
  • Tingsanchali, T., & Maheswaran, S. (1990). 2-D depth-averaged flow computation near groyne. Journal of Hydraulic Engineering, 116(1), 71–86. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(71)
  • Uijttewaal, W. S. J. (2005). Effects of groyne layout on the flow in groyne fields: Laboratory experiments. Journal of Hydraulic Engineering, 131(9), 782–791. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:9(782)
  • Vaghefi, M., Radan, P., & Akbari, M. (2019). Modeling total resistance and form resistance of movable bed channels via experimental data and a kernel-based approach. International Journal of Civil Engineering, 17(5), 607–617. https://doi.org/10.1007/s40999-018-0340-x
  • Yossef, M. F. M., & de Vriend, H. J. (2010). Sediment exchange between a river and its groyne fields: Mobile-bed experiment. Journal of Hydraulic Engineering, 136(9), 610–625. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000226
  • Zarrati, A. R., & Espandar, R. (1998). Sedimentation between pile groynes with horizontal elements. 3-Rd International Congress on Hydroscience and Engineering, p. 6.
  • Zhang, H., & Nakagawa, H. (2009). Characteristics of local flow and bed deformation at impermeable and permeable spur dykes. Annual Journal of Hydraulic Engineering, 53, 145–150.
  • Zhang, H., Nakagawa, H., Kawaike, K., & Baba, Y. (2009). Experiment and simulation of turbulent flow in local scour around a spur dyke. International Journal of Sediment Research, 24(1), 33–45. https://doi.org/10.1016/S1001-6279(09)60014-7
  • Zhang, H., Nakagawa, H., Ogura, M., & Mizutani, H. (2013). Experiment study on channel bed characteristics around spur dykes of different shapes. Journal of Japan Society of Civil Engineers, 69 (2), 489–499. https://doi.org/10.2208/jscejam.69.i_489
  • Zhang, J. X., Fan, X., Wang, J., & Liang, D. (2019). Detached-eddy simulation of turbulent coherent structures around groynes in a trapezoidal open channel. Journal of Hydrodynamics. https://doi.org/10.1007/s42241-019-0077-2
  • Zhang, R., & Stive, M. J. F. (2019). Numerical modelling of hydrodynamics of permeable pile groins using SWASH. Coastal Engineering, 153(July), Article 103558. https://doi.org/10.1016/j.coastaleng.2019.103558
  • Zsugyel, M., Tél, T., & Józsa, J. (2014). Numerical investigation of chaotic advection past a groyne based on laboratory flow experiment. Advances in Water Resources, 71, 81–92. https://doi.org/10.1016/j.advwatres.2014.06.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.