406
Views
3
CrossRef citations to date
0
Altmetric
Articles

Potential predictability of suspended sediment concentration in the data constrained regions of the Mahanadi River basin, Eastern India

ORCID Icon &
Pages 467-487 | Received 29 Apr 2021, Accepted 22 Nov 2021, Published online: 14 Mar 2022

References

  • Abdulla, F. A., & Lettenmaier, D. P. (1997). Development of regional parameter estimation equations for a macroscale hydrologic model. Journal of Hydrology, 197(1–4), 230–257. https://doi.org/10.1016/S0022-1694(96)03262-3
  • Al-Alawi, S. M., Abdul-Wahab, S. A., & Bakheit, C. S. (2008). Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environmental Modelling & Software, 23(4), 396–403. https://doi.org/10.1016/j.envsoft.2006.08.007
  • Amos, K. J., Alexander, J., Horn, A., Pocock, G. D., & Fielding, C. R. (2004). Supply limited sediment transport in a high-discharge event of the tropical burdekin river, north queensland, Australia. Sedimentology, 51(1), 145–162. https://doi.org/10.1111/j.1365-3091.2004.00616.x
  • Andrea, B., Francesc, G., Jérôme, L., Eusebi, V., & Francesc, S. (2006). Cross-site comparison of variability of DOC and nitrate c-q hysteresis during the autumn-winter period in three Mediterranean headwater streams: A synthetic approach. Biogeochemistry, 77(3), 327–349. https://doi.org/10.1007/s10533-005-0711-7
  • Andrews, S. S., Mitchell, J. P., Mancinelli, R., Karlen, D. L., Hartz, T. K., Horwath, W. R., et al. (2002). On-farm assessment of soil quality in california’s central valley. Agronomy Journal, 94(1), 12–23. https://doi.org/10.2134/agronj2002.0012
  • Araujo, H. A., Cooper, A. B., Hassan, M. A., & Venditti, J. (2012). Estimating suspended sediment concentrations in areas with limited hydrological data using a mixed-effects model. Hydrological Processes, 26(24), 3678–3688. https://doi.org/10.1002/hyp.8462
  • Asselman, N. E. M. (1999). Suspended sediment dynamics in a large drainage basin: The river rhine. Hydrological Processes, 13(10), 1437–1450. https://doi.org/10.1002/(SICI)1099-1085(199907)13:10<1437::AID-HYP821>3.0.CO;2-J
  • Asselman, N. E. M. (2000). Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234(3–4), 228–248. https://doi.org/10.1016/S0022-1694(00)00253-5
  • Barbarossa, V., Huijbregts, M. A. J., Hendriks, A. J., Beusen, A. H. W., Clavreul, J., King, H., & Schipper, A. M. (2017). Developing and testing a global-scale regression model to quantify mean annual streamflow. Journal of Hydrology, 544, 479–487. https://doi.org/10.1016/j.jhydrol.2016.11.053
  • Bastia, F., & Equeenuddin, S. M. (2016). Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India. Global and Planetary Change, 144, 51–66. https://doi.org/10.1016/j.gloplacha.2016.07.004
  • Bathurst, J. C., Graf, W. H., & Cao, H. H. (1987). Bed load discharge equations for steep mountain rivers. In C. R. Thorne, J. C. Bathurst, & R. D. Hey (Eds.), Sediment transport in gravel-bed rivers (pp. 453–491). John Wiley.
  • Bayram, A., Kankal, M., & Önsoy, H. (2012). Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks. Environmental Monitoring and Assessment, 184(7), 4355–4365. https://doi.org/10.1007/s10661-011-2269-2
  • Beroho, M., Briak, H., El Halimi, R., Ouallali, A., Boulahfa, I., Mrabet, R., et al. (2020). Analysis and prediction of climate forecasts in northern Morocco: Application of multilevel linear mixed effects models using R software. Heliyon, 6(10), https://doi.org/10.1016/j.heliyon.2020.e05094
  • Biksham, G., & Subramanian, V. (1988). Sediment transport of the Godavari river basin and its controlling factors. Journal of Hydrology, 101(1–4), 275–290. https://doi.org/10.1016/0022-1694(88)90040-6
  • Campos, J. A., & Pedrollo, O. C. (2021). A regional ANN-based model to estimate suspended sediment concentrations in ungauged heterogeneous basins. Hydrological Sciences Journal, 66(7), 1222. https://doi.org/10.1080/02626667.2021.1918695
  • Chakrapani, G. J., & Subramanian, V. (1990). Preliminary studies on the geochemistry of the Mahanadi River basin, India. Chemical Geology, 81(3), 241–253. https://doi.org/10.1016/0009-2541(90)90118-Q
  • Chakrapani, G. J., & Subramanian, V. (1993). Rates of erosion and sedimentation in the Mahanadi river basin, India. Journal of Hydrology, 149(1–4), 39–48. https://doi.org/10.1016/0022-1694(93)90098-T
  • Choubin, B., Solaimani, K., Habibnejad Roshan, M., & Malekian, A. (2017). Watershed classification by remote sensing indices: A fuzzy c-means clustering approach. Journal of Mountain Science, 14(10), 2053–2063. https://doi.org/10.1007/s11629-017-4357-4
  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. McGraw-Hill.
  • Corbeil, R. R., & Searle, S. R. (1976). Restricted maximum likelihood (reml) estimation of variance components in the mixed model. Technometrics, 18(1), 31–38. https://doi.org/10.2307/1267913
  • CWC. (2014). Mahanadi basin. Ministry of Water Resources.
  • Duan, N. (1983). Smearing estimate: A nonparametric retransformation method. Journal of the American Statistical Association, 78(383), 605–610. https://doi.org/10.1080/01621459.1983.10478017
  • Efthimiou, N. (2019). The role of sediment rating curve development methodology on river load modeling. Environmental Monitoring and Assessment, 191(2), https://doi.org/10.1007/s10661-018-7167-4
  • Elwan, A., Singh, R., Patterson, M., Roygard, J., Horne, D., Clothier, B., & Jones, G. (2018). Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads. Environmental Monitoring and Assessment, 190(2), https://doi.org/10.1007/s10661-017-6444-y
  • Fagundes, H. de O., Fan, F. M., & de Paiva, R. C. D. (2019). Automatic calibration of a large-scale sediment model using suspended sediment concentration, water quality, and remote sensing data. RBRH, 24, https://doi.org/10.1590/2318-0331.241920180127
  • Fagundes, H. O., Fan, F. M., Paiva, R. C. D., Siqueira, V. A., Buarque, D. C., Kornowski, L. W., et al. (2021). Sediment flows in South America supported by daily hydrologic-hydrodynamic modeling. Water Resources Research, 57(2), e2020WR027884. https://doi.org/10.1029/2020WR027884
  • Ferguson, R. I. (1986). River loads underestimated by rating curves. Water Resources Research, 22(1), 74–76. https://doi.org/10.1029/WR022i001p00074
  • Ferro, C. A. T., Hannachi, A., & Stephenson, D. B. (2005). Simple nonparametric techniques for exploring changing probability distributions of weather. Journal of Climate, 18(21), 4344–4354. https://doi.org/10.1175/JCLI3518.1
  • Foster, G. R., McCool, D. K., Renard, K. G., & Moldenhauer, W. C. (1981). Conversion of the universal soil loss equation to SI metric units. Journal of Soil & Water Conservation, 36(6), 355–359.
  • García, M. H. (2008). Sediment transport and morphodynamics. In Sedimentation engineering (pp. 21–163). American Society of Civil Engineers. https://doi.org/10.1061/9780784408148.ch02
  • Golshan, M., Kavian, A., Esmali, A., & Ziegler, A. D. (2020). Runoff and sediment yield modeling in data-sparse catchments in the garehsoo river basin, northern Iran. Environmental Earth Sciences, 79(14), https://doi.org/10.1007/s12665-020-09084-2
  • Gottschalk, L. C. (1964). Reservoir sedimentation in handbook of applied hydrology. McGraw Hill Book Company. (Section 7-1).
  • Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135) 
  • Gyawali, R., Griffis, V. W., Watkins, D. W., & Fennessey, N. M. (2015). Regional regression models for hydro-climate change impact assessment. Hydrological Processes, 29(8), 1972–1985. https://doi.org/10.1002/hyp.10312
  • Halim, R., Clemente, R. S., Routray, J. K., & Shrestha, R. P. (2007). Integration of biophysical and socio-economic factors to assess soil erosion hazard in the upper Kaligarang watershed, Indonesia. Land Degradation & Development, 18(4), 453–469. https://doi.org/10.1002/ldr.774
  • Halimi, E. (2009). Nonlinear mixed-effects models and bootstrap resampling: Analysis of Non-normal repeated measures in biostatistical practice. Amazon Books, 320.
  • Harrington, S. T., & Harrington, J. R. (2013). An assessment of the suspended sediment rating curve approach for load estimation on the rivers bandon and owenabue, Ireland. Geomorphology, 185, 27–38. https://doi.org/10.1016/j.geomorph.2012.12.002
  • Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., et al. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6(5), https://doi.org/10.7717/peerj.4794
  • Heng, S., & Suetsugi, T. (2015). Regionalization of sediment rating curve for sediment yield prediction in ungauged catchments. Hydrology Research, 46(1), 26–38. https://doi.org/10.2166/nh.2013.090
  • Horowitz, A. J. (2003). An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrological Processes, 17(17), 3387–3409. https://doi.org/10.1002/hyp.1299
  • Horowitz, A. J., Elrick, K. A., & Smith, J. J. (2001). Estimating suspended sediment and trace element fluxes in large river basins: Methodological considerations as applied to the NASQAN programme. Hydrological Processes, 15(7), 1107–1132. https://doi.org/10.1002/hyp.206
  • Horton, R. E. (1932). Drainage-basin characteristics, Transactions, American Geophysical Union, 13(1), 350–361. https://doi.org/10.1029/TR013i001p00350
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  • Huang, J.-J. (2012). Soil loss and erodibility factor for improving conservation specification design in southwestern Taiwan. International Journal of the Physical Sciences, 7(17), https://doi.org/10.5897/ijps12.063
  • Jahanshahi, A., Golshan, M., & Afzali, A. (2017). Simulation of the catchments hydrological processes in arid, semi-arid and semi-humid areas. Desert (Biaban), 22(1), 1–10. https://doi.org/10.22059/jdesert.2017.62295
  • Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), https://doi.org/10.1098/rsta.2015.0202
  • Kachigan, S. K. (1991). Multivariate statistical analysis: A conceptual introduction. New York Radius Press.
  • Kar, R., & Sarkar, A. (2021). Anthropogenic influences on the variation of runoff and sediment load of the Mahanadi River basin. Hydrological Sciences Journal, 66(12), https://doi.org/10.1080/02626667.2021.1967957
  • Kelson, K. I., & Wells, S. G. (1989). Geologic influences on fluvial hydrology and bedload transport in small mountainous watersheds, northern New Mexico, U.S.A. Earth Surface Processes and Landforms, 14(8), 671–690. https://doi.org/10.1002/esp.3290140803
  • Kisi, O., Ozkan, C., & Akay, B. (2012). Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm. Journal of Hydrology, 428-429, 94–103. https://doi.org/10.1016/j.jhydrol.2012.01.026
  • Kokkonen, T. S., Jakeman, A. J., Young, P. C., & Koivusalo, H. J. (2003). Predicting daily flows in ungauged catchments: Model regionalization from catchment descriptors at the coweeta hydrologic laboratory, north carolina. Hydrological Processes, 17(11), 2219–2238. https://doi.org/10.1002/hyp.1329
  • Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005
  • Mahalik, N. (2000). Stratigraphy, palaeography and evolution history of Mahanadi delta. In Mahanadi Delta- geology, Resources and biodiversity, New Delhi (pp. 53–70). AIT Alumni Association (Indian Chapter).
  • Mao, L., & Carrillo, R. (2017). Temporal dynamics of suspended sediment transport in a glacierized andean basin. Geomorphology, 287, 116–125. https://doi.org/10.1016/j.geomorph.2016.02.003
  • Megnounif, A., Terfous, A., & Ouillon, S. (2013). A graphical method to study suspended sediment dynamics during flood events in the wadi sebdou, NW Algeria (1973-2004). Journal of Hydrology, 497, 24–36. https://doi.org/10.1016/j.jhydrol.2013.05.029
  • Misset, C., Recking, A., Legout, C., Poirel, A., Cazilhac, M., Esteves, M., & Bertrand, M. (2019). An attempt to link suspended load hysteresis patterns and sediment sources configuration in alpine catchments. Journal of Hydrology, 576, 72–84. https://doi.org/10.1016/j.jhydrol.2019.06.039
  • Moglen, G. E., Eltahir, E. A. B., & Bras, R. L. (1998). On the sensitivity of drainage density to climate change. Water Resources Research, 34(4), 855–862. https://doi.org/10.1029/97WR02709
  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
  • Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715
  • Panda, D. K., Kumar, A., & Mohanty, S. (2011). Recent trends in sediment load of the tropical (peninsular) river basins of India. Global and Planetary Change, 75(3–4), 108–118. https://doi.org/10.1016/j.gloplacha.2010.10.012
  • Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. CATENA, 147. https://doi.org/10.1016/j.catena.2016.08.002
  • Panigrahy, B. K., & Raymahashay, B. C. (2005). River water quality in weathered limestone: A case study in upper Mahanadi basin, India. Journal of Earth System Science, 114(5), 533–543. https://doi.org/10.1007/BF02702029
  • Phillips, J. M., Webb, B. W., Walling, D. E., & Leeks, G. J. L. (1999). Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrological Processes, 13(7), 1035–1050. https://doi.org/10.1002/(SICI)1099-1085(199905)13:7<1035::AID-HYP788>3.0.CO;2-K
  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer. https://doi.org/10.1007/978-1-4419-0318-1
  • Ramos, T. B., Gonçalves, M. C., Branco, M. A., Brito, D., Rodrigues, S., Sánchez-Pérez, J. M., et al. (2015). Sediment and nutrient dynamics during storm events in the enxoé temporary river, southern Portugal. Catena, 127, 177–190. https://doi.org/10.1016/j.catena.2015.01.001
  • Reddy, O., Maji, G. P., & Gajbhiye, A. K., & S, K. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, central India - A remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1), 1–16. https://doi.org/10.1016/j.jag.2004.06.003
  • Renard, K., Foster, G., Weesies, G., McCool, D., & Yoder, D. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook No. 703.
  • Restrepo, J. D., Kjerfve, B., Hermelin, M., & Restrepo, J. C. (2006). Factors controlling sediment yield in a major South American drainage basin: The Magdalena river, Colombia. Journal of Hydrology, 316(1–4), 213–232. https://doi.org/10.1016/j.jhydrol.2005.05.002
  • Roberts, G. (1997). The influence of sampling frequency on streamflow chemical loads. Water and Environment Journal, 11(2), 114–118. https://doi.org/10.1111/j.1747-6593.1997.tb00101.x
  • Roy, N. G., & Sinha, R. (2014). Effective discharge for suspended sediment transport of the ganga river and its geomorphic implication. Geomorphology, 227, 18–30. https://doi.org/10.1016/j.geomorph.2014.04.029
  • Sadeghi, S. H. R., Saeidi, P., Singh, V. P., & Telvari, A. R. (2019). How persistent are hysteresis patterns between suspended sediment concentration and discharge at different timescales? Hydrological Sciences Journal, 64(15), 1909–1917. https://doi.org/10.1080/02626667.2019.1676895
  • Saliha, A. H., Awulachew, S. B., Cullmann, J., & Horlacher, H. B. (2011). Estimation of flow in ungauged catchments by coupling a hydrological model and neural networks: Case study. Hydrology Research, 42(5), 386–400. https://doi.org/10.2166/nh.2011.157
  • Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37(5), 1169–1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  • Sassolas-Serrayet, T., Cattin, R., & Ferry, M. (2018). The shape of watersheds. Nature Communications, 9(1), 1–8. https://doi.org/10.1038/s41467-018-06210-4
  • Schaake, J. V., Duan, Q., Koren, V. I., & Cong, S. (1997). Regional parameter estimation of land surface parameterizations for GCIP large-scale area southwest. Presented at 13th conference on hydrology, American Meteorology society, Long Beach, Calif, February.
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy. Geological Society of America Bulletin, 67(5), 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
  • Seibert, J. (1999). Regionalisation of parameters for a conceptual rainfall-runoff model. Agricultural and Forest Meteorology, 98-99, 279–293. https://doi.org/10.1016/S0168-1923(99)00105-7
  • Singh, R., Kundu, D. K., & Kumar, A. (2009). Characterisation of dominant soil subgroups of Eastern India for formulating water management strategies Research bulletin no.44. Water Technology Center of Eastern Region (Indian Council of Agricultural Research).
  • Syvitski, J. P. M. (2010). Factor analysis of size frequency distributions: Significance of factor solutions based on simulation experiments. In Principles, methods and application of particle size analysis (pp. 249–263). https://doi.org/10.1017/cbo9780511626142.023
  • Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115(1), 1–19. https://doi.org/10.1086/509246
  • Syvitski, J. P., Morehead, M. D., Bahr, D. B., & Mulder, T. (2000). Estimating fluvial sediment transport: The rating parameters. Water Resources Research, 36(9), 2747–2760. https://doi.org/10.1029/2000WR900133
  • Tayfur, G., Karimi, Y., & Singh, V. P. (2013). Principle component analysis in conjuction with data driven methods for sediment load prediction. Water Resources Management, 27(7), 2541–2554. https://doi.org/10.1007/s11269-013-0302-7
  • Thiessen, A. H. (1911). Precipitation averages for large areas. Monthly Weather Review, 39(7), 1082–1089. https://doi.org/10.1175/1520-0493(1911)39<1082b:pafla>2.0.co;2
  • Vercruysse, K., Grabowski, R. C., & Rickson, R. J. (2017). Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Science Reviews, 166, 38–52. https://doi.org/10.1016/j.earscirev.2016.12.016
  • Vigiak, O., Malagó, A., Bouraoui, F., Vanmaercke, M., & Poesen, J. (2015). Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large basins. Science of the Total Environment, 538, 855–875. https://doi.org/10.1016/j.scitotenv.2015.08.095
  • Vogel, R. M., Wilson, I., & Daly, C. (1999). Regional regression models of annual streamflow for the United States. Journal of Irrigation and Drainage Engineering, 125(3), 148–157. https://doi.org/10.1061/(ASCE)0733-9437(1999)125:3(148)
  • Walling, D. E. (1977). Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research, 13(3), 531–538. https://doi.org/10.1029/WR013i003p00531
  • Walling, D. E., & Fang, D. (2003). Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 39(1–2), 111–126. https://doi.org/10.1016/S0921-8181(03)00020-1
  • Walling, D. E., & Webb, B. W. (1987). Material transport By the World’S rivers: Evolving perspectives. In Iahs publication (International Association of hydrological sciences) (pp. 313–329.
  • Walling, D. E., & Webb, W. (1981). The reliability of suspended sediment load data, erosion and sediment transport measurement. Proceedings of the florence symposium.
  • Webster, R., & Mcbratney, A. B. (1989). On the akaike information criterion for choosing models for variograms of soil properties. Journal of Soil Science, 40(3), 493–496. https://doi.org/10.1111/j.1365-2389.1989.tb01291.x
  • Wischmeier, W. H., Smith, D. D., & Uhland, R. E. (1958). Evaluation of factors in the soil loss equation. Agricultural Engineering, 39, 458–462.
  • Yadav, A., Chatterjee, S., & Equeenuddin, S. M. (2018a). Prediction of suspended sediment yield by artificial neural network and traditional mathematical model in Mahanadi river basin, india. Sustainable Water Resources Management, 4(4), 745–759. https://doi.org/10.1007/s40899-017-0160-1
  • Yadav, A., Chatterjee, S., & Equeenuddin, S. M. (2018b). Suspended sediment yield estimation using genetic algorithm-based artificial intelligence models: Case study of Mahanadi River, India. Hydrological Sciences Journal, 63(8), 1162–1182. https://doi.org/10.1080/02626667.2018.1483581
  • Yadav, A., Chatterjee, S., & Equeenuddin, S. M. (2021). Suspended sediment yield modeling in Mahanadi River, India by multi-objective optimization hybridizing artificial intelligence algorithms. International Journal of Sediment Research, 36(1), 76–91. https://doi.org/10.1016/j.ijsrc.2020.03.018
  • Yadav, A., & Satyannarayana, P. (2020). Multi-objective genetic algorithm optimization of artificial neural network for estimating suspended sediment yield in Mahanadi River basin, India. International Journal of River basin management, 18(2), 207–215. https://doi.org/10.1080/15715124.2019.1705317
  • Yang, C. C., & Lee, K. T. (2018). Analysis of flow-sediment rating curve hysteresis based on flow and sediment travel time estimations. International Journal of Sediment Research, 33(2), 171–182. https://doi.org/10.1016/j.ijsrc.2017.10.003
  • Zounemat-Kermani, M., Kişi, Ö, Adamowski, J., & Ramezani-Charmahineh, A. (2016). Evaluation of data driven models for river suspended sediment concentration modeling. Journal of Hydrology, 535, 457–472. https://doi.org/10.1016/j.jhydrol.2016.02.012
  • Zuecco, G., Penna, D., Borga, M., & van Meerveld, H. J. (2016). A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale. Hydrological Processes, 30(9), 1449–1466. https://doi.org/10.1002/hyp.10681

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.