193
Views
0
CrossRef citations to date
0
Altmetric
Articles

Design flood computation at ungauged catchments of Baitarani River Basin using scaling concept and probabilistic time distribution of design rainfall

ORCID Icon, , , &
Pages 591-606 | Received 05 Jun 2021, Accepted 31 Mar 2022, Published online: 24 May 2022

References

  • Aksoy, H., Kurt, I., & Eris, E. (2009). Filtered smoothed minima baseflow separation method. Journal of Hydrology, 372(1–4), 94–101. https://doi.org/10.1016/j.jhydrol.2009.03.037
  • Balbastre-Soldevila, R., Garcia-Bartula, R., & Andres-Domenech, I. (2019). A comparison of design storms for urban drainage system application. Water, 11(4), 757. https://doi.org/10.3390/w11040757
  • Ben-Zvi, A. (2013). Bypassing determination of time of concentration. Journal of Hydrologic Engineering, 18(12), 1674–1683. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000744
  • Bezak, N., Šraj, M., Rusjan, S., & Mikoš, M. (2017). Design Rainfall in Engineering Applications with Focus on the Design Discharge. Engineering and Mathematical Topics in Rainfall. https://doi.org/10.5772/intechopen.70319.
  • Bhunya, P. K., Mishra, S. K., & Berndtsson, R. (2003). Simplified two-parameter Gamma distribution for derivation of synthetic unit hydrograph. Journal of Hydrologic Engineering, 8(4), ASCE, ISSN. https://doi.org/10.1061/(ASCE)1084-0699
  • Bhunya, P. K., Mishra, S. K., Ojha, C. S. P., & Berndtsson, R. (2004). Parameter estimation of Beta distribution for unit hydrograph derivation. Journal of Hydrologic Engineering, 9(4), 325–332. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:4(325)
  • Bhuyan, M. K., Mohanty, S., Jena, J., & Bhunya, P. K. (2016). Hydrologic analysis for river diversion scheme for Kanupur Dam Project – A case study. Water & Energy International, 58(11), 52–57.
  • Bonaccorso, B., Brigandì, G., & Aronica, G. T. (2020). Regional sub-hourly extreme rainfall estimates in Sicily under a scale invariance framework. Water Resources Management, 34(14), 4363–4380. https://doi.org/10.1007/s11269-020-02667-5
  • Bougadis, J., & Adomowski, K. (2006). Scaling model of a rainfall intensity-duration-frequency relationship. Hydrological Processes, 20(17), 3747–3757. https://doi.org/10.1002/hyp.6386
  • Central Water Commission. (1997). Flood Estimation Report for Mahanadi Sub-Zone – 3(d) (Revised), New Delhi.
  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. Mc-Graw Hill.
  • Coles, S., Heffernan, J., & Tawn, J. (1999). Dependence measures for extreme value analyses. Extremes, 2(4), 339–365. https://doi.org/10.1023/A:1009963131610
  • Conolly, R. D., Schirmer, J., & Dunn, P. K. (1998). A daily rainfall disaggregation model. Agricultural & Forest Meteorology, 92(2), 105–117. https://doi.org/10.1016/S0168-1923(98)00088-4
  • Cunnane, C. (1988). Methods and merits of regional flood frequency analysis. Journal of Hydrology, 100(1-3), 269–290. https://doi.org/10.1016/0022-1694(88)90188-6
  • Dalrymple, T. (1960). Flood frequency analysis. U.S. Geological Survey.
  • DWA-A. 118E. (2006). Hydraulic dimensioning and verification of drain and sewer systems. In German association for water, wastewater and waste, hennef. DWA.
  • Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19(2), 507–515. https://doi.org/10.1002/hyp.5675
  • Formetta, G., Over, T., & Stewart, E. (2021). Assessment of peak flow scaling and its effect on flood quantile estimation in the United Kingdom. Water Resources Research, 57(4), e2020WR028076. https://doi.org/10.1029/2020WR028076
  • Gado, T. A., & Nguyen, V. T. V. (2015). Comparison of homogenous region delineation approaches for regional flood frequency analysis at ungauged sites. Journal of Hydrologic Engineering. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001312
  • García-Bartual, R., & Andrés-Doménech, I. (2017). A two-parameter design storm for Mediterranean convective rainfall. Hydrology and Earth System Science, 21(5), 2377–2387. https://doi.org/10.5194/hess-21-2377-2017
  • Glasbey, C. A., Cooper, G., & McGechan, M. B. (1995). Disaggregation of daily rainfall by conditional simulation from a point-process model. Journal of Hydrology, 165(1-4), 1–9. https://doi.org/10.1016/0022-1694(94)02598-6
  • Gupta, V. K., & Waymire, E. C. (1990). Multiscaling properties of spatial rainfall and river flow distributions. Journal of Geophysical Research, 95(D3), 1999–2009. https://doi.org/10.1029/JD095iD03p01999
  • Haberlandt, U., Ebner von Eschenbach, A. D., & Buchwald, I. (2008). A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrology and Earth System Science, 12(6), 1353–1367. https://doi.org/10.5194/hess-12-1353-2008
  • Haktanir, T., & Nurullah, S. (1990). Suitability of two-parameter gamma distribution and three-parameter beta distribution as synthetic hydrographs in Anatolia. Hydrological Science Journal, 35(2), 167–184. https://doi.org/10.1080/02626669009492416
  • Hershfield, D. M. (1961). Rainfall frequency atlas of the United States for durations from 30 min to 24 h and return periods from 1 to 100 years. Technical Paper 40, U. S. Dept. of Comm., Weather Bureau, Washington, D. C.
  • Hosking, J. R. M. (1990). L-moments analysis and estimation of distributions using linear combinations or order statistics. Journal of the Royal Statistical Society Series B, 52, 105–124.
  • Huff, F. A. (1967). Time distribution of rainfall in heavy storms. Water Resource Research, 3(4), 1007–1019. https://doi.org/10.1029/WR003i004p01007
  • Ishak, E., Haddad, K., Zaman, M., & Rahman, A. (2011). Scaling property of regional floods in New South Wales Australia. Natural Hazards, 58(3), 1155–1167. https://doi.org/10.1007/s11069-011-9719-6
  • Katz, R. W., Parlange, M., & Naveau, P. (2002). Statistics of extremes in hydrology. Advances in Water Resources, 25(8–12), 1287–1304. https://doi.org/10.1016/S0309-1708(02)00056-8
  • Keifer, C. J., & Chu, H. H. (1957). Synthetic storm pattern for drainage design. Journal of Hydrological Division, 83(4), 1–25.
  • Kottegoda, N. T., Natale, L., & Raiteri, E. (2003). A parsimonious approach to stochastic multisite modeling and disaggregation of daily rainfall. Journal of Hydrology, 274(1–4), 47–61. https://doi.org/10.1016/S0022-1694(02)00356-6
  • Koutsoyiannis, D. (1994). A stochastic disaggregation method for design storm and flood synthesis. Journal of Hydrology, 156(1–4), 193–225. https://doi.org/10.1016/0022-1694(94)90078-7
  • Koutsoyiannis, D. (2004). Statistics of extremes and estimations of extreme rainfall: II. Empirical investigation of long-term rainfall records. Hydrological Science Journal, 49(4), 591–610. https://doi.org/10.1623/hysj.49.4.591.54424
  • Koutsoyiannis, D. (2004). Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation. Hydrological Science Journal, 49, 575–590.
  • Koutsoyiannis, D., & Foufoula-Georgiou, E. (1993). A scaling model of storm hyetograph. Water Resource Research, 29(7), 2345–2361. https://doi.org/10.1029/93WR00395
  • Koutsoyiannis, D., & Onof, C. (2001). Rainfall disaggregation using adjusting procedure on a poisson cluster model. Journal of Hydrology, 246(1–4), 109–122. https://doi.org/10.1016/S0022-1694(01)00363-8
  • Koutsoyiannis, D., Onof, C., & Wheater, H. S. (2003). Multivariate rainfall disaggregation at a fine time scale. Water Resource Research, 39(7), 1173. https://doi.org/10.1029/2002WR001600
  • Krvavica, N., & Rubini, J. (2020). Evaluation of design storms and critical rainfall durations for flood prediction in partially urbanized catchments. Water, 12(12), 2044. https://doi.org/10.3390/w12072044
  • Langhaar, H. L. (1951). Dimensional analysis and theory of models. Wiley.
  • Lee, K. T., & Ho, J.-Y. (2008). Design Hyetograph for Typhoon Rainstorms in Taiwan. Journal of Hydrologic Engineering, 13(7), 647–651. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(647)
  • Marquardt, D. W. (1962). An algorithm for least-square estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030
  • Menabde, M., Seed, A., & Pegram, G. (1999). A simple scaling model for extreme rainfall. Water Resource Research, 35(1), 335–339. https://doi.org/10.1029/1998WR900012
  • Miller, J. F., Frederick, R. H., & Tracey, R. J. (1973). Precipitation-frequency atlas of the conterminous western United States (by states). In NOAA atlas 2, Vol. 11, pp. 13. National Weather Service.
  • Mul, M. L., Mutiibwa, R. K., Uhlenbrook, S., & Savenije, H. H. G. (2008). Hydrograph separation using hydrochemical tracers in the Makanya catchment, Tanzania. Physics and Chemistry of the Earth, 33(1–2), 151–156. https://doi.org/10.1016/j.pce.2007.04.015
  • Na, W., & Yoo, C. (2018). Evaluation of rainfall temporal distribution models with annual maximum rainfall events. Water, 10(10), 1468. https://doi.org/10.3390/w10101468
  • Nathan, R. J., & McMahon, T. A. (1990). Evaluation of automated techniques for base flow and recession analyses. Water Resource Research, 26(7), 1465–1473. https://doi.org/10.1029/WR026i007p01465
  • Nguyen, V.-T.-V., & Yeo, M.-H. (2014). A spatial-temporal downscaling approach to construction of rainfall intensity-duration-frequency relations in The context of Climate change. CUNY Academic Works.
  • NRCS; USDA. National Engineering Handbook: Part 630 – Hydrology; USDA Soil Conservation Service.
  • Olsson, J., & Berndtsson, R. (1998). Temporal rainfall disaggregation based on scaling properties. Water Science Technology, 37(11), 73–79.
  • Papalexiou, S. M., & Koutsoyiannis, D. (2013). Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resource Research, 49(1), 187–201. https://doi.org/10.1029/2012WR012557
  • Pilgrim, D. H., & Cordery, I. (1975). Rainfall temporal patterns for design floods. Journal of the Hydraulics Division, American Society of Civil Engineers, 101(HYl), 81–95. https://doi.org/10.1061/JYCEAJ.0004197
  • Rahman, A. S., Khan, Z., & Rahman, A. (2020). Application of independent component analysis in regional flood frequency analysis: Comparison between quantile regression and parameter regression techniques. Journal of Hydrology, 581, 124372. https://doi.org/10.1016/j.jhydrol.2019.124372
  • Rao, A. R., & Hamed, K. H. (2000). Flood frequency analysis. CRC Press.
  • Santos, E. G., & Salas, J. D. (1992). Stepwise disaggregation scheme for synthetic hydrology. Journal of Hydrologic Engineering, 118(5), 765–784. https://doi.org/10.1061/(ASCE)0733-9429
  • Sifalda, V. (1973). Entwicklung eines berechnungsregens für die Bemessung von kanalnetzen. Gwf-Wasser/Abwasser, 114, 435–440.
  • Soltani, S., Almasi, P., Halfi, R., Modarres, R., Esfahani, P. M., & Dehno, M. G. (2020). A new approach to explore climate change impact on rainfall-intersity-frequency curves. Theoretical and Applied Climatology, (142), 911–928. https://doi.org/10.1007/s00704-020-03309-x.
  • Verma, A. K., & Jha, M. K. (2015). Evaluation of a GIS-based watershed model for streamflow and sediment-yield simulation in the Upper Baitarani River Basin of Eastern India. Journal of Hydrologic Engineering, (ASCE), 20(6), C5015001-12. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001134
  • Viglione, M. A. R., & Blöschl, G. (2009). On the role of the runoff coefficient in the mapping of rainfall to flood return periods. Hydrology and Earth System Science, 13(5), 577–593. https://doi.org/10.5194/hess-13-577-2009
  • Watt, W., Chow, K., Hogg, W., & Lathem, K. A. (1986). 1-h urban design storm for Canada. Canadian Journal of Civil Engineering, 13(3), 293–300. https://doi.org/10.1139/l86-041
  • Watt, E., & Marsalek, J. (2013). Critical review of the evolution of design storm event concept. Canadian Journal of Civil Engineering, 40(2), 105–113. https://doi.org/10.1139/cjce-2011-0594
  • Waymire, E., & Gupta, V. K. (1991). On lognormality and scaling in spatial rainfall averages. In D. Scbertxer, & S. Lovejoy (Eds.), Non-linear variability in geophysics. Scaling and fractals (pp. 175–183). Kluwer.
  • Yen, B. C., & Chow, V. T. (1990). Design hyetographs for small drainage structures. Journal of Hydraulic Division, 106(6), 1055–1076. https://doi.org/10.1061/JYCEAJ.0005442

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.