511
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Pipe failure rate prediction in water distribution networks using multivariate adaptive regression splines and random forest techniques

&
Pages 653-661 | Received 08 Jul 2019, Accepted 05 Jan 2020, Published online: 23 Jan 2020

References

  • Abdulelah Al-Sudani, Z., S. Q. Salih, and Z. M. Yaseen. 2019. “Development of Multivariate Adaptive Regression Spline Integrated with Differential Evolution Model for Streamflow Simulation.” Journal of Hydrology 573: 1–12. doi:10.1016/j.jhydrol.2019.03.004.
  • Achim, D., F. Ghotb, and K. J. McManus. 2007. “Prediction of Water Pipe Asset Life Using Neural Networks.” Journal of Infrastructure Systems 13 (1): 26–30. doi:10.1061/(ASCE)1076-0342(2007)13:1(26).
  • Aghayee, A. (2006). “Investigation of Burst Prediction Approach for Water Distribution Systems by Evolutionary Computing.” MSc Thesis, Civil Engineering Department, Faculty of Engineering, University of Ferdowsi, Mashhad, Iran.
  • Al-Juboori, A. M. 2019. “Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models.” Water Resources Management 33 (9): 3257–3270. doi:10.1007/s11269-019-02299-4.
  • Asnaashari, A. (2007). “Water Pipeline Failure Modeling: Statistical, Artificial Neural Network and Survival Modeling.” PhD Thesis, University of Science and Technology of Lille.
  • Berardi, L., Z. Kapelan, O. Giustolisi, and D. A. Savic. 2008. “Development of Pipe Deterioration Models for Water Distribution Systems Using EPR.” Journal of Hydroinformatics 10 (2): 113–126. doi:10.2166/hydro.2008.012.
  • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
  • Chen, G., T. Long, J. Xiong, and Y. Bai. 2017. “Multiple Random Forests Modelling for Urban Water Consumption Forecasting.” Water Resources Management 31 (15): 4715–4729. doi:10.1007/s11269-017-1774-7.
  • Christodoulou, S., P. Aslani, and A. Vanreterghem. 2004. “A Risk Analysis Framework for Evaluating Structural Degradation of Water Mains in Urban Settings, Using Neurofuzzy Systems and Statistical Modeling Techniques.” In Proceedings of the World Water and Environmental Resources Congress and Related Symposia. Philadelphia, PA: ASCE.
  • Emamgolizadeh, S., S. M. Bateni, D. Shahsavani, T. Ashrafi, and H. Ghorbani. 2015. “Estimation of Soil Cation Exchange Capacity Using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS).” Journal of Hydrology 529: 1590–1600. doi:10.1016/j.jhydrol.2015.08.025.
  • Forghani, A., and R. C. Peralta. 2017. “Transport Modeling and Multivariate Adaptive Regression Splines for Evaluating Performance of ASR Systems in Freshwater Aquifers.” Journal of Hydrology 553: 540–548. doi:10.1016/j.jhydrol.2017.08.012.
  • Friedman, J. H. 1991. “Multivariate Adaptive Regression Splines (With Discussion).” The Annals of Statistics 19 (1): 1–141. doi:10.1214/aos/1176347963.
  • Gould, S., F. Boulaire, D. Marlow, and J. Kodikara. 2009. “Understanding How the Australian Climate Can Affect Pipe Failure.” In Ozwater 09, Melbourne, Australia: Melbourne Convention & Exhibition Centre, March, 16–18.
  • Habibian, A. 1994. “Effect of Temperature Changes on Water-main Breaks.” Journal of Transportation Engineering 120 (2): 312–321. doi:10.1061/(ASCE)0733-947X(1994)120:2(312).
  • Haider, H., R. Sadiq, and S. Tesfamariam. 2013. “Performance Indicators for Small-and Medium-sized Water Supply Systems: A Review.” Environmental Reviews 22 (1): 1–40. doi:10.1139/er-2013-0013.
  • Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning. New York: Springer.
  • Heddam, S., and O. Kisi. 2018. “Modelling Daily Dissolved Oxygen Concentration Using Least Square Support Vector Machine, Multivariate Adaptive Regression Splines and M5 Model Tree.” Journal of Hydrology 559: 499–509. doi:10.1016/j.jhydrol.2018.02.061.
  • Hu, Y., and D. Hubble. 2007. “Factors Contributing to the Failure of Asbestos Cement Water Mains.” Canadian Journal of Civil Engineering 34: 608–621. doi:10.1139/l06-162.
  • Karaa, F., and D. Marks. 1990. “Performance of Water Distribution Networks: Integrated Approach.” Journal of Performance of Constructed Facilities 4 (1): 51–67. doi:10.1061/(ASCE)0887-3828(1990)4:1(51).
  • Karimian, S. F. (2015). “Failure Rate Prediction Models of Water Distribution Networks.” MSc. Thesis, Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada.
  • Kleiner, Y., and B. Rajani. 2001a. “Comprehensive Review of Structural Deterioration of Water Mains: Statistical Models.” Journal of Urban Water 3 (3): 131–150. doi:10.1016/S1462-0758(01)00033-4.
  • Kleiner, Y., and B. Rajani. 2001b. “Comprehensive Review of Structural Deterioration of Water Mains: Physically Based Models.” Journal of Urban Water 3 (3): 151–164. doi:10.1016/S1462-0758(01)00032-2.
  • Kleiner, Y., and B. Rajani. 2008. “Prioritising Individual Water Mains for Renewal.” In Proceedings of the ASCE/EWRI World Environmental and Water Resources, 1–10. Honolulu, Hawaii: National Research Council CanadaCNRC-NRC.
  • Kutylowska, M. 2015. “Neural Network Approach for Failure Rate Prediction.” Engineering Failure Analysis 47 (Part A): 41–48. doi:10.1016/j.engfailanal.2014.10.007.
  • Kutylowska, M. 2017a. “Comparison of Two Types of Artificial Neural Networks for Predicting Failure Frequency of Water Conduits.” Periodica Polytechnica Civil Engineering 61 (1): 1–6.
  • Kutylowska, M. 2017b. “Regression Methods for Predicting Rate and Type of Failures of Water Conduits.” Ecological Chemistry and Engineering A 24 (2): 193–205.
  • Kutylowska, M. 2018. “Forecasting Failure Rate of Water Pipes.” Water Supply 19 (1): 264–273. doi:10.2166/ws.2018.078.
  • Kutylowska, M. 2019. “Application of MARSplines Method for Failure Rate Prediction.” Periodica Polytechnica Civil Engineering 63 (1): 87–92.
  • Makar, J. 2000. “A Preliminary Analysis of Failures in Grey Cast Iron Water Pipes.” Engineering Failure Analysis 7 (1): 43–53. doi:10.1016/S1350-6307(99)00005-9.
  • Makar, J., R. Desnoyers, and S. McDonald. 2001. “Failure Modes and Mechanisms in Gray Cast Iron Pipe.” International Conference on Underground Infrastructure Research, Kitchener, Ontario: Centre for Advancement of Trenchless Technologies, June, 10–13.
  • Pelletier, G., A. Mailhot, and J. Villeneuve. 2003. “Modeling Water Pipe Breaks-three Case Studies.” Journal of Water Resources Planning and Management 129 (2): 115–123. doi:10.1061/(ASCE)0733-9496(2003)129:2(115).
  • Rajani, B., and Y. Kleiner. 2001. “Comprehensive Review of Structural Deterioration of Water Mains: Physically Based Models.” Urban Water 3 (3): 151–164. doi:10.1016/S1462-0758(01)00032-2.
  • Rajani, B., and S. Tesfamariam. 2007. “Estimating Time to Failure of Cast Iron Water Mains.” Proceedings of the ICE - Water Management 160 (2): 83–88.
  • Randall-Smith, M., A. Russell, and R. Oliphant. 1992. “Guidance Manual for the Structural Condition Assessment of the Trunk Mains.” Swindon, UK: Water Research Centre.
  • Rezaie-balf, M., S. R. Naganna, A. Ghaemi, and P. C. Deka. 2017. “Wavelet Coupled MARS and M5 Model Tree Approaches for Groundwater Level Forecasting.” Journal of Hydrology 553: 356–373. doi:10.1016/j.jhydrol.2017.08.006.
  • Sadler, J. M., J. L. Goodall, M. M. Morsy, and K. Spencer. 2018. “Modeling Urban Coastal Flood Severity from Crowd-sourced Flood Reports Using Poisson Regression and Random Forest.” Journal of Hydrology 559: 43–55. doi:10.1016/j.jhydrol.2018.01.044.
  • Safari, M. J. S. 2019. “Decision Tree (DT), Generalized Regression Neural Network (GR) and Multivariate Adaptive Regression Splines (MARS) Models for Sediment Transport in Sewer Pipes.” Water Science and Technology 79 (6): 1113–1122. doi:10.2166/wst.2019.106.
  • Savic, D. A. 2009. “The Use of Data-driven Methodologies for Prediction of Water and Wastewater Asset Failures.” In Risk Management of Water Supply and Sanitation Systems, edited by P. Hlavinek, C. Popovska, J. Marsalek, I. Mahrikova, and T. Kukharchyk, 181–190. The Netherlands: Springer.
  • Sharda, V. N., S. O. Prasher, R. M. Patel, P. R. Ojasvi, and C. Prakash. 2008. “Performance of Multivariate Adaptive Regression Splines (MARS) in Predicting Runoff in mid-Himalayan Micro-watersheds with Limited Data.” Hydrological Sciences Journal 53 (6): 1165–1175. doi:10.1623/hysj.53.6.1165.
  • Shiri, J. 2018. “Improving the Performance of the Mass Transfer-based Reference Evapotranspiration Estimation Approaches through a Coupled Wavelet-random Forest Methodology.” Journal of Hydrology 561: 737–750. doi:10.1016/j.jhydrol.2018.04.042.
  • Shirzad, A., M. Tabesh, and R. Farmani. 2014. “A Comparison between Performance of Support Vector Regression and Artificial Neural Network in Prediction of Pipe Burst Rate in Water Distribution Networks.” KSCE Journal of Civil Engineering 18 (4): 941–948. doi:10.1007/s12205-014-0537-8.
  • Snider, B., and E. A. McBean. 2018. “Improving Time to Failure Predictions for Water Distribution Systems Using Extreme Gradient Boosting Algorithm.” Proceedings of 1st International WDSA/CCWI 2018 Joint Conference, Kingston, Ontario, Canada, July, 23–25.
  • Tabesh, M., J. Soltani, R. Farmani, and D. Savic. 2009. “Assessing Pipe Failure Rate and Mechanical Reliability of Water Distribution Networks Using Data-driven Modeling.” Journal of Hydroinformatics 11 (1): 1–17. doi:10.2166/hydro.2009.008.
  • Vanrenterghem-Raven, A. 2007. “Risk Factors of Structural Degradation of an Urban Water Distribution System.” Journal of Infrastructure Systems 13 (1): 55–64. doi:10.1061/(ASCE)1076-0342(2007)13:1(55).
  • Wang, C., Z. Niu, H. Jia, and H. Zhang. 2010. “An Assessment Model of Water Pipe Condition Using Bayesian Inference.” Journal of Zhejiang University-Science A (Applied Physics and Engineering) 11 (7): 495–504. doi:10.1631/jzus.A0900628.
  • Wood, A., and B. J. Lence. 2009. “Using Water Main Break Data to Improve Asset Management for Small and Medium Utilities: District of Maple Ridge, B.C.” Journal of Infrastructure Systems 15 (2): 111–119. doi:10.1061/(ASCE)1076-0342(2009)15:2(111).
  • Yilmaz, B., E. Aras, S. Nacar, and M. Kankal. 2018. “Estimating Suspended Sediment Load with Multivariate Adaptive Regression Spline, Teaching-learning Based Optimization, and Artificial Bee Colony Models.” Science of the Total Environment 639: 826–840. doi:10.1016/j.scitotenv.2018.05.153.
  • Yu, P. S., T. C. Yang, S. Y. Chen, C. M. Kuo, and H. W. Tseng. 2017. “Comparison of Random Forests and Support Vector Machine for Real-time Radar-derived Rainfall Forecasting.” Journal of Hydrology 552: 92–104. doi:10.1016/j.jhydrol.2017.06.020.
  • Zhao, W., N. Sánchez, H. Lu, and A. Li. 2018. “A Spatial Downscaling Approach for the SMAP Passive Surface Soil Moisture Product Using Random Forest Regression.” Journal of Hydrology 563: 1009–1024. doi:10.1016/j.jhydrol.2018.06.081.
  • Zhu, J., and W. P. Pierskalla Jr. 2016. “Applying a Weighted Random Forests Method to Extract Karst Sinkholes from LiDAR Data.” Journal of Hydrology 533: 343–352. doi:10.1016/j.jhydrol.2015.12.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.