566
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Applying deep convolutional neural network with 3D reality mesh model for water tank crack detection and evaluation

, , &
Pages 682-695 | Received 11 Dec 2019, Accepted 13 Apr 2020, Published online: 04 May 2020

References

  • Abdel-Qader, I., O. Abudayyeh, and M. E. Kelly. 2003. “Analysis of Edge-detection Techniques for Crack Identification in Bridges.” Journal of Computing in Civil Engineering 17 (4): 255-263. doi:10.1061/(ASCE)0887-3801(2003)17:4(255).
  • Abdel-Qader, I., S. Pashaie-Rad, O. Abudayyeh, and S. Yehia. 2006. “PCA-based Algorithm for Unsupervised Bridge Crack Detection.” Advances in Engineering Software 37 (12): 771–778. doi:10.1016/j.advengsoft.2006.06.002.
  • Abe, S., T. Okano, and H. Sato. 1992. “A High Speed Image Processor for Detection of Pavement Cracks.” In Proceedings of the IAPR Workshop on Machine Vision Applications, Tokyo, Japan, 529–532.
  • Abe, S., T. Okano, and H. Sato. 1993. “System Integration of Road Crack Evaluation System.” In Proceedings of SPIE - The International Society for Optical Engineering, San Diego, CA, USA, 38–48.
  • Aboudi, J. 1987. “Stiffness Reduction of Cracked Solids.” Engineering Fracture Mechanics 26 (5): 637–650. doi:10.1016/0013-7944(87)90129-9.
  • Adhikari, R., O. Moselhi, and A. Bagchi. 2014. “Image-based Retrieval of Concrete Crack Properties for Bridge Inspection.” Automation in Construction 39: 180–194. doi:10.1016/j.autcon.2013.06.011.
  • Alaknanda, A. R. S., and P. Kumar. 2009. “Flaw Detection in Radiographic Weldment Images Using Morphological Watershed Segmentation Technique.” NDT & E International 42 (1): 2–8. doi:10.1016/j.ndteint.2008.06.005.
  • Bakker, I. D. 2017. https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750
  • Bang, S., S. Park, H. Kim, and H. Kim. 2019. “Encoder-decoder Network for Pixel‐level Road Crack Detection in Black‐box Images.” Computer-Aided Civil and Infrastructure Engineering 34 (8): 713–727. doi:10.1111/mice.12440.
  • Bentley Systems, I. 2017. ContextCapture: Quick Start Guide. Bentley Institute Press.
  • Bu, G., S. Chanda, H. Guan, J. Jo, M. Blumenstein, and Y. C. Loo. 2015. “Crack Detection Using a Texture Analysis-based Technique for Visual Bridge Inspection.” Electronic Journal of Structural Engineering 14 (1): 41–48.
  • Budiansky, B., and R. J. O’connel. 1976. “Elastic Moduli of a Cracked Solid.” International Journal of Solids and Structures 12 (2): 81–87. doi:10.1016/0020-7683(76)90044-5.
  • Cha, Y.-J., W. Choi, and O. Buyukozturk. 2017. “Deep Learning-based Crack Damage Detection Using Convolutional Neural Networks.” Computer-Aided Civil and Infrastructure Engineering 32 (5): 361–378. doi:10.1111/mice.12263.
  • Chen, F. C., and M. R. Jahanshahi. 2017. “NB-CNN: Deep Learning-based Crack Detection Using Convolutional Neural Network and Naıve Bayes Data Fusion.” IEEE Transaction on Industrial Electronics 65 (5): 4392–4400. doi:10.1109/TIE.2017.2764844.
  • Chen, L. C., Y.-C. Shao, -H.-H. Jan, C.-W. Huang, Y.-M. Tien. 2006. “Measuring System for Cracks in Concrete Using Multitemporal Images.” Journal of Surveying Engineering 132 (2): 77–82. doi:10.1061/(ASCE)0733-9453(2006)132:2(77).
  • Cheng, H. D., J. Chen, C. Glazier, and Y. Hu. 1999. “Novel Approach to Pavement Cracking Detection Based on Fuzzy Set Theory.” Journal of Computing in Civil Engineering 13 (4): 270–280. doi:10.1061/(ASCE)0887-3801(1999)13:4(270).
  • Christen, R., A. Bergamini, and M. Motavalli. 2009. “High Precision Measurement of Surface Cracks Using an Optical System.” Measurement Science and Technology 20 (7): 077001. doi:10.1088/0957-0233/20/7/077001.
  • Davoudi, R., G. R. Miller, and J. N. Kutz. 2019. “Structural Load Estimation Using Machine Vision and Surface Crack Patterns for Shear-critical RC Beams and Slabs.” Journal of Computing in Civil Engineering 32 (4): 04018024.
  • Dorafshan, S., R. J. Thomas, C. Coopmans, and M. Maguire. 2018a. “Deep Learning Neural Networks for sUAS-assisted Structural Inspections: Feasibility and Application.” In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 874–882. 28. Dallas, TX, June 12–15.
  • Dorafshan, S., R. J. Thomas, and M. Maguire. 2018b. “Comparison of Deep Convolutional Neural Networks and Edge Detectors for Image-based Crack Detection in Concrete.” Construction and Building Materials 186: 1031–1045. doi:10.1016/j.conbuildmat.2018.08.011.
  • Dorafshan, S., R. J. Thomas, and M. Maguire. 2019. “Benchmarking Image Processing Algorithms for Unmanned Aerial System-Assisted Crack Detection in Concrete Structures.” Infrastructures 4: 19. doi:10.3390/infrastructures4020019.
  • Dung, C. V., and L. D. Anh. 2019. “Autonomous Concrete Crack Detection Using Deep Fully Convolutional Neural Network.” Automation in Construction 99: 52–58. doi:10.1016/j.autcon.2018.11.028.
  • Fukushima, K. 1980. “Neocognitron: A Self-organizing Neural Netowk Model for a Mechanism of Patter Recognition Unaffected by Shift in Position.” Biological Cybernetics 36: 193–202. doi:10.1007/BF00344251.
  • German, S., J.-S. Jeon, Z. Zhu, C. Bearman, I. Brilakis, R. DesRoches, L. Lowes et al. 2013. “Machine Vision Enhanced Post-earthquake Inspection.” Journal of Computing in Civil Engineering 27 (6): 622–634. doi:10.1061/(ASCE)CP.1943-5487.0000333.
  • Girshick, R. 2015. “Fast R-CNN.” In Proceedings of the 15th IEEE international Conference on Computer Vision (ICCV ‘15), Santiago, Chile, 1440–1448.
  • Girshick, R., J. Donahue, T. Darrel, and J. Malik. 2014. “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.” In Proceedings of the 27th IEEE Conference on Computer Vision and Patern Recognition (CVPR’ 14), Columbus, Ohio, 580–587.
  • Guo, W., L. Soibelman, and J. Garret. 2009. “Visual Pattern Recognition Supporting Defect Reporting and Condition Assessment of Wastewater Collection Systems.” Journal of Computing in Civil Engineering 23 (3): 160–169. doi:10.1061/(ASCE)0887-3801(2009)23:3(160).
  • He, K., G. Gkioxari, P. Dollár, and R. Girshick. 2017. Mask R-CNN. arXiv:1703.06870.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2015. “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.” IEEE Transactions on Pattern Analysis and Machine Intelligence 37 (9): 1904–1916. doi:10.1109/TPAMI.2015.2389824.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep Residual Learning for Image Recognition.” In Prodeedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 770–778.
  • Huang, H.-W., Q.-T. Li, and D.-M. Zhang. 2018. “Deep Learning Based Image Recognition for Crack and Leakage Defects of Metro Shield Tunnel.” Tunnelling and Underground Space Technology 77: 166–176. doi:10.1016/j.tust.2018.04.002.
  • Huang, J., V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, T. Song, S. Guadarrama, and K. Murphy. 2017. Speed/accuracy Trade-offs for Modern Convolutional Object Detectors. Honolulu, USA: CVPR.
  • Hui, J., 2018. “Medium.” [Online]. https://medium.com/@jonathan_hui/image-segmentation-with-mask-r-cnn-ebe6d793272
  • Ioffe, S., and C. Szegedy. 2015. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” In International Conference on Machine Learning, Lille, France, 448–456.
  • Jahanshahi, M. R., and S. F. Masri. 2012. “Adaptive Vision-based Crack Detection Using 3D Scene Reconstruction for Condition Assessment of Structures.” Journal of Automation in Construction 22: 567576.
  • Jahanshahi, M. R., and S. F. Masri. 2013. “A New Methodology for Non Contack Accurate Crack Width Measurement through Photogrammetry for Automated Structural Safety Evaluation.” Smart Materials and Structures 22 (3): 035019. doi:10.1088/0964-1726/22/3/035019.
  • Jahanshahi, M. R., S. F. Masri, C. W. Padgett, and G. S. Sukhatme. 2013. “An Innovative Methodology for Detection and Quantification of Cracks through Incorporation of Depth Perception.” Machine Vision and Applications 24 (2): 227–241. doi:10.1007/s00138-011-0394-0.
  • Kabir, S., P. Rivard, D. C. He, and P. Thivierge. 2009. “Damage Assessment for Concrete Structure Using Image Processing Techniques on Acoustic Borehole Imagery.” Construction and Building Materials 23 (10): 3166–3174. doi:10.1016/j.conbuildmat.2009.06.013.
  • Kalfarisi, R., Z. Y. Wu, and K. Soh. 2020. “Crack Detection and Segmentation Using Deep Learning with 3D Reality Mesh Model for Quantitative Assessment and Integrated Visualization.” Journal of Computing in Civil Engineering 34 (3): 04020010. doi:10.1061/19(ASCE)CP.1943-5487.0000890.
  • Kamaliardakani, M., L. Sun, and M. Ardakani. 2014. “Sealed-crack Detection Algorithm Using Heuristic Thresholding Approach.” Journal of Computing in Civil Engineering  30 (1): 04014110.
  • Kaseko, M. S., Z. P. Lo, and S. G. Ritchie. 1994. “Comparison of Traditional and Neural Classifiers for Pavement Crack Detection.” Journal of Transportation Engineering 120 (4): 552–569. doi:10.1061/(ASCE)0733-947X(1994)120:4(552).
  • Kim, B., and S. Cho. 2018. “Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique.” Sensors (Basel) 18 (10): 3452. doi:10.3390/s18103452.
  • Kim, Y. S., and C. Haas. 2002. “A Man-machine Balanced Rapid Object Model for Automation of Pavement Crack Sealing and Maintenance.” Canadian Journal of Civil Engineering 29 (3): 1–16. doi:10.1139/l02-018.
  • Kirschke, K. R., and S. A. Velinsky, 1992. “Histogram-based Approach for Automated Pavement-crack Sensing.” Journal of Transportation Engineering 118: 700–710.
  • Koch, C., G. M. Jog, and I. Brilakis, 2013. “Automated Pothole Distress Assessment Using Asphalt Pavemen Video Data.” Journal of Computing in Civil Engineering 27: 370–378.
  • Koch, C., and I. Brilakis. 2011. “Pothole Detection in Asphalt Pavement Images.” Advanced Engineering Informatics 25 (3): 507–515. doi:10.1016/j.aei.2011.01.002.
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. “ImageNet Classification with Deep Convolutional Neural Network.” In Proceedings of the 2002 Neural Information Processing Systems, Las Vegas, NV, USA.
  • Lattanzi, D., and G. Miller. 2014. “Robust Automated Concrete Damage Detection Algorithms for Field Applications.” Journal of Computing in Civil Engineering 28 (2): 253–262. doi:10.1061/(ASCE)CP.1943-5487.0000257.
  • LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-based Learning Applied to Document Recognition.” Proceedings of the IEEE 86 (11): 2278–2323. doi:10.1109/5.726791.
  • Li, Q. Q., and X. L. Liu. 2008. “Novel Approach to Pavement Image Segmentation Based on Neighboring Difference Histogram Method.” In Proceedings of the International Congress on Image Signal Processing, Zurich, 792–796.
  • Lin T. -Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and L. Zitnicksung. 2014. Microsoft COCO: Common Objects in Context. European Conference on Computer Vision (ECCV).
  • Mohan, A., and S. Poobal. 2018. “Crack Detection Using Image Processing: A Critical Review and Analysis.” Alexandria Engineering Journal 57 (2): 787–798. doi:10.1016/j.aej.2017.01.020.
  • Moon, H., and J. Kim. 2011. “Intelligent Crack Detecting Algorithm on the Concrete Crack Image Using Neural Network.” In Preceedings of the 28th ISARC, Seoul, Korea.
  • Myrans, J., R. Everson, and Z. Kapelan. 2019. “Automated Detection of Fault Types in CCTV Surveys.” Journal of Hydroinformatics 21 (1): 153–163. doi:10.2166/hydro.2018.073.
  • Nejad, F. M., and H. Zakeri. 2011. “An Expert System Based on Wavelet Transform and Radon Neural Network for Pavement Distress Classification.” Expert Systems with Applications 38 (6): 7088–7101. doi:10.1016/j.eswa.2010.12.060.
  • Nishikawa, T., J. Yoshida, T. Sugiyama, and Y. Fujino. 2012. “Concrete Crack Detection by Multiple Sequential Image Filtering.” Computer-aided Civil and Infrastructure Engineering 27 (1): 29–47. doi:10.1111/j.1467-8667.2011.00716.x.
  • NYSDOT Office of Structure. 2016. Bridge Manual Inspection. New York, USA: Department of Transportation.
  • O’Byrne, M., F. Schoefs, B. Ghosh, and V. Pakrashi. 2013. “Texture Analysis Based Damage Detection of Ageing Infrastructural Elements.” Computer-aided Civil and Infrastructure Engineering 28 (3): 162–177. doi:10.1111/j.1467-8667.2012.00790.x.
  • Oh, H., N. W. Garrick, and L. E. K. Achenie. 1997. “Segmentation Algorithm Using Iterated Clipping for Processing Noisy Pavement Images.” In Proceedings of the International Conference on Imaging Technologies: Techniques and Applications in Civil Engineering, Davos, Switzerland, 138–147.
  • Oh, J. K., G. Jang, S. Oh, J. H. Lee, B.-J. Yi, Y. S. Moon, J. S. Lee et al. 2009. “Bridge Inspection Robot System with Machine Vision.” Automation in Construction 18 (7): 929–941. doi:10.1016/j.autcon.2009.04.003.
  • Oliveira, H., and P. L. Correia. 2009. “Automatic Road Crack Segmentation Using Entropy and Image Dynamic Thresholding.” In Proceedings of the European Signal Processing Conf. (EUSPICO’09), Glasgow, Scotland, 622–626.
  • Pan, S. J., and Q. Yang. 2010. “A Survey on Transfer Learning.” IEEE Transactions on Knowledge and Data Engineering 22 (10): 1345–1359. doi:10.1109/TKDE.2009.191.
  • Park, S., S. Bang, H. Kim, and H. Kim. 2019. “Patch-based Crack Detection in Black Box Images Using Convolutional Neural Networks.” Journal of Computing in Civil Engineering 33 (3): 04019017. doi:10.1061/(ASCE)CP.1943-5487.0000831.
  • Ren, S., K. He, R. Girshick, and J. Sun. 2017. “Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (6): 1137–1149. doi:10.1109/TPAMI.2016.2577031.
  • Saar, T., and O. Talvik. 2010. “Automatic Asphalt Pavement Crack Detection and Classification Using Neural Network.” In Proceedings of the Biennial Baltic Electronic, Tallinn, Estonia, 345–348.
  • Schmugge, S., L. Rice, N. R. Nguyen, J. Lindberg, R. Grizzi, C. Joffe, and M. C. Shin. 2016. “Detection of Cracks in Nuclear Power Plant Using Spatial-temporal Grouping of Local Patches.” In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 1–7.
  • Sermanet, P., K. Kavukcuoglu, S. Chintala, and Y. LeCun. 2013. “Pedestrian Detection with Unsupervised Multi-stage Feature Learning.” In Proceedings of the 26th IEEE Conference on Computer Vision and Patern Recognition (CVPR ‘13), Portland, Oregon, 3626–3633.
  • Sinha, S. K., and P. W. Fieguth. 2006. “Automated Detection of Cracks in Buried Concrete Pipe Images.” Automation in Construction 15 (1): 58–72. doi:10.1016/j.autcon.2005.02.006.
  • Sinha, S. K., P. W. Fieguth, and M. A. Polak. 2003. “Computer Vision Techniques for Automatic Structural Assessment of Underground Pipes.” Computer-Aided Civil and Infrastructure Engineering 18 (2): 95–112. doi:10.1111/1467-8667.00302.
  • Sollazzo, G., K. C. P. Wang, G. Bosurgi, and A. J. Q. Li. 2016. “Hybrid Procedure for Automated Detection of Cracking with 3D Pavement Data.” Journal of Computing in Civil Engineering 30 (6): 04016032. doi:10.1061/(ASCE)CP.1943-5487.0000597.
  • Song, M., and D. Civco. 2004. “Road Extraction Using SVM and Image Segmentation.” Photogrammetric Engineering and Remote Sensing 70 (12): 1365–1371. doi:10.14358/PERS.70.12.1365.
  • Subitras, P., J. Dumoulin, V. Legay, and D. Barba. 2006. “Automation of Pavement Surface Crack Detection Using the Continuous Wavelet Transform.” In Proceedings of the International Conference on Image Processing, Atlanta, GA, USA, 3037–3040.
  • Szegedy, C., S. Ioffe, V. Vanhoucke, and A. A. Alemi. 2017. “Inception-v4, Inception-resnet and the Impact of Residual Connections on Learning.” In AAAI, San Francisco, California, USA, 4278–4284.
  • Tong, Z., J. Gao, Z. Han, and Z. Wang. 2018. “Recognition of Asphalt Pavement Crack Length Using Deep Convolutional Neural Networks.” Road Materials and Pavement Design 19 (6): 1334–1349. doi:10.1080/14680629.2017.1308265.
  • Torok, M. M., M. Golparvar-Fard, and K. B. Kochersberger. 2014. “Image-based Automated 3D Crack Detection for Post-disaster Building Assessment.” Journal of Computing in Civil Engineering 28 (5): A4014004.
  • Tsai, Y., V. Kaul, and R. M. Mersereau. 2010. “Critical Assessment of Pavement Distress Segmentation Methods.” Journal of Transportation Engineering 136 (1): 11–19. doi:10.1061/(ASCE)TE.1943-5436.0000051.
  • Tsao, S., N. Kehtarnavaz, P. Chan, and R. Lytton. 1994. “Image-based Exper System Approach to Distress Detection on CRC Pavement.” The Journal of Transportation Engineering 120 (1): 62–64.
  • Tzutalin. 2015. “LabelImg Git Code.” [Online]. https://github.com/tzutalin/labelImg
  • Vaillant, R., C. Monrocq, and Y. LeCun. 1994. “Original Approach for the Localization of Objects in Images.” IEEE Proceedings: Vision, Image and Signal Processing 141 (4): 245–250.
  • Vargas, R., A. Mosavi, and L. Ruiz. 2017. “Deep Learning: A Review.” Advances in Intelligent Systems and Computing. doi:10.20944.
  • Wang, K. C., S. Nallamothu, and R. P. Elliot. 1998. Classification of Pavement Surface Distress with an Embedded Neural Net Chip, 131–161. Reston, VA: ASCE.
  • Wang, K. C. P., Q. Li, and W. Gong, 2007. “Wavelet-based Pavement Distress Image Edge Detection with À Trous Algorithm.” Transportation Research Record 2024: 73–81.
  • Wang, R. 2013. “3D Building Modeling Using Images and LiDAR: A Review.” International Journal of Image and Data Fusion 4 (4): 273–292. doi:10.1080/19479832.2013.811124.
  • Wu, L., S. Mokhtari, A. Nazef, B. Nam, and H. B. Yun. 2014. “Improvement of Crack Detection Accuracy Using a Novel Crack Defragmentation Technique in Image-based Road Assessment.” Journal of Computing in Engineering 30 (1): 040141181–040141189.
  • Yamaguchi, T., and S. Hashimoto. 2006. “Automated Crack Detection for Concrete Surface Image Using Percolation Model and Edge Information.” In Proceedings of the 32nd Annual Conf. on IEEE Industrial Electronics, Paris, France, 3355–3360.
  • Yamaguchi, T., S. Nakamura, R. Saegusa, and S. Hashimoto. 2008. “Image-based Crack Detection for Real Concrete Surfaces.” IEEJ Transactions on Electrical and Electronic Engineering 3 (1): 759–770. doi:10.1002/tee.20244.
  • Yu, S. N., J. H. Jang, and C. S. Han. 2007. “Auto Inspection System Using a Mobile Robot for Detecting Concrete Cracks in a Tunnel.” Automation in Construction 16 (3): 255–261. doi:10.1016/j.autcon.2006.05.003.
  • Zhang, A., K. C. P. Wang, Y. Fei, Y. Liu, S. Tao, C. Chen, J. Q. Li et al. 2018a. “Deep Learning-based Fully Automated Pavement Crack Detection on 3D Asphalt Surfaces with an Improved Cracknet.” Journal of Computing in Civil Engineering 32 (5): 04018041. doi:10.1061/(ASCE)CP.1943-5487.0000775.
  • Zhang, K., H. D. Cheng, and B. Zhang. 2018b. “Unified Approach to Pavement Crack and Sealed Crack Detection Using Preclassification Based on Transfer Learning.” Journal of Computing in Civil Engineering 32 (2): 04018001. doi:10.1061/(ASCE)CP.1943-5487.0000736.
  • Zhang, L., F. Yang, Y. Zhang, and Y. Zhu. 2016. “Road Crack Detection Using Deep Convolutional Neural Network.” In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, Arizona, USA, 3708–3712.
  • Zhou, J., P. S. Huang, and F. P. Chiang. 2006. “Wavelet-based Pavement Distress Detection and Evaluation.” Optical Engineering 45 (2): 027007. doi:10.1117/1.2172917.
  • Zhu, Z., and I. Brilakis. 2010. “Machine Vision-based Concrete Surface Quality Assessment.” Journal of Construction Engineering and Management 136 (2): 210–218. doi:10.1061/(ASCE)CO.1943-7862.0000126.
  • Zhu, Z., S. German, and I. Brilakis. 2011. “Visual Retrieval of Concrete Crack Properties for Automated Post-earthquake Structural Safety Evaluation.” Automation in Construction 20 (7): 874–883. doi:10.1016/j.autcon.2011.03.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.