1,785
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

A comparative study of statistical and machine learning methods to infer causes of pipe breaks in water supply networks

ORCID Icon & ORCID Icon
Pages 534-548 | Received 14 Oct 2019, Accepted 17 Jul 2020, Published online: 05 Aug 2020

References

  • Achim, D., F. Ghotb, and K. J. McManus. 2007. “Prediction of Water Pipe Asset Life Using Neural Networks.” Journal of Infrastructure Systems 13 (1): 26–30. doi:10.1061/(asce)1076-0342(2007)13:1(26).
  • Ahn, J. C., S. W. Lee, G. S. Lee, and J. Y. Koo. 2005. “Predicting Water Pipe Breaks Using Neural Network.” Water Science and Technology: Water Supply 5 (3–4): 159–172. doi:10.2166/ws.2005.0096.
  • Akaike, H. 1973. “Information Theory and an Extension of the Maximum Likelihood Principle.” In Proceedings of the 2nd International Symposium on Information Theory, B. N. Petrov and F. Csaki edited by, 267–281. Budapest. doi:10.1007/978-1-4612-1694-0.
  • Andreou, S. A., D. H. Marks, and R. M. Clark. 1987. “A New Methodology for Modelling Break Failure Patterns in Deteriorating Water Distribution Systems: Theory.” Advances in Water Resources 10 (1): 2–10. doi:10.1016/0309-1708(87)90002-9.
  • BBC. 2018. “Water Firms Failed Customers during ‘Beast from the East’” BBC News, June 19.
  • Boxall, J. B., A. O’Hagan, S. Pooladsaz, A. J. Saul, and D. M. Unwin. 2007. “Estimation of Burst Rates in Water Distribution Mains.” In Proceedings of the Institution of Civil Engineers - Water Management, 160:73–82. doi:10.1680/wama.2007.160.2.73.
  • Castillo, M.-C. M., D. González-Zeas, and L. Garrote. 2016. “Pressure as a Predictor of Occurrence of Pipe Breaks in Water Distribution Networks.” Urban Water Journal 13 (7): 676–686. Taylor Francis. doi:10.1080/1573062X.2015.1024687.
  • Chang, J. 2015. Package ‘Lda. R Software package. https://cran.r-project.org/web/packages/lda/lda.pdf
  • Chen, T., and H. Tong. 2018. Xgboost: EXtreme Gradient Boosting. R software package. https://cran.r-project.org/web/packages/xgboost/vignettes/xgboost.pdf
  • Christodoulou, S. 2011. “Water Network Assessment and Reliability Analysis by Use of Survival Analysis.” Water Resources Management; an International Journal - Published for the European Water Resources Association (EWRA) 25 (4): 1229–1238.
  • Cortes, C., and V. Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20 (3): 273–297. doi:10.1023/A:1022627411411.
  • De Silva, S. D., M. Moglia, P. Davis, and L. S. Burn. 2002. “Condition Assessment and Probabilistic Analysis to Estimate Failure Rates in Buried Pipelines.” 5th National Conference of the Australasian Society for Trenchless Technology. Sydney, Australia.
  • Dehghan, A., K. J. McManus, and E. F. Gad. 2008. “Statistical Analysis of Structural Failures of Water Pipes.” Proceedings of the Institution of Civil Engineers - Water Management 161 (4): 207–214. doi:10.1680/wama.2008.161.4.207.
  • discoverwater. 2019. Loss of Supply. https://discoverwater.co.uk/loss-of-supply
  • Enders, C. K. 2010. Applied Missing Data Analysis. New York: Guilford Press.
  • Faris Hamdala, K., and G. Y. Sagar. 2016. “Statistical Analysis of Pipe Breaks in Water Distribution Systems in Ethiopia, the Case of Hawassa.” IOSR Journal of Mathematics (IOSR-JM) 12 (3): 127–136. doi:10.9790/5728-120304127136.
  • Folkman, S. 2018. Water Main Break Rates in the USA and Canada: A Comprehensive Study. Utah State University. https://digitalcommons.usu.edu/mae_facpub/174
  • Hoskins, A., and I. Stoianov. 2014. “InfraSense: A Distributed System for the Continuous Analysis of Hydraulic Transients.” Procedia Engineering 70 (2014): 823–832. doi:10.1016/j.proeng.2014.02.090.
  • Hosmer, D. W., and S. Lemeshow. 2004. Applied Logistic Regression. 2nd ed. New York: John Wiley & Sons.
  • Jacobs, P., and B. Karney. 1994. “GIS Development with Application to Cast Iron Water Main Breakage Rate.” 2nd International Conference in Water Pipeline Systems. Edinburgh, Scotland.
  • Kabir, G., G. Demissie, R. Sadiq, and S. Tesfamariam. 2015. “Integrating Failure Prediction Models for Water Mains: Bayesian Belief Network Based Data Fusion.” Knowledge-Based Systems 85: 159–169. Elsevier B.V. doi: 10.1016/j.knosys.2015.05.002.
  • Kaushik, G., A. Manimaran, A. Vasan, and V. Sarangan. 2017. “Cracks under Pressure? Burst Prediction in Water Networks Using Dynamic Metrics.” Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications (IAAI-17)), Cracks, 4694–4700.
  • Kecman, V. 2005. “Support Vector Machines – An Introduction.” In Support Vector Machines: Theory and Applications. Studies in Fuzziness and Soft Computing, edited by L. Wang. Berlin Heidelberg: Springer. doi:10.1007/10984697_1.
  • Kettler, A. J., and I. C. Goulter. 1985. “An Analysis of Pipe Breakage in Urban Water Distribution Networks.” Canadian Journal of Civil Engineering 12 (2): 286–293. doi:10.1139/l85-030.
  • Kimutai, E., G. Betrie, R. Brander, R. Sadiq, and S. Tesfamariam. 2015. “Comparison of Statistical Models for Predicting Pipe Failures: Illustrative Example with the City of Calgary Water Main Failure.” Journal of Pipeline Systems Engineering and Practice 6 (4): 04015005/1–04015005/11. doi:10.1061/(ASCE)PS.1949-1204.0000196.
  • Kleiner, Y., and B. Rajani. 2002. “Forecasting Variations and Trends in Water-Main Breaks.” Journal of Infrastructure Systems 8 (4): 122–131. doi:10.1061/(ASCE)1076-0342(2002)8:4(122).
  • Kleiner, Y., and B. Rajani. 2012. “Comparison of Four Models to Rank Failure Likelihood of Individual Pipes.” Journal of Hydroinformatics 14 (3): 659–681. doi:10.2166/hydro.2011.029.
  • Kutyłowska, M. 2016. “Support Vector Machines and Neural Networks for Forecasting of Failure Rate of Water Pipes.” In Proceedings of ECOpole 10: 41–46. doi:10.2429/proc.2016.10(1)005.
  • Kutyłowska, M. 2017. “Prediction of Failure Frequency of Water-Pipe Network in the Selected City.” Periodica Polytechnica Civil Engineering 61 (3): 548–553. doi:10.3311/PPci.9997.
  • Kutyłowska, M. 2018. “K-Nearest Neighbours Method as a Tool for Failure Rate Prediction.” Periodica Polytechnica Civil Engineering 62 (2): 318–322. doi:10.3311/PPci.10045.
  • Kutyłowska, M. 2019. “Application of MARSplines Method for Failure Rate Prediction.” Periodica Polytechnica Civil Engineering 63 (1): 87–92. doi:10.3311/PPci.12559.
  • Le, G. Y., and P. Eisenbeis. 2000. “Using Maintenance Records to Forecast Failures in Water Networks.” Urban Water 2 (3): 173–181. doi:10.1016/S1462-0758(00)00057-1.
  • Lei, J., and S. Sveinung. 1998. “Statistical Approach for Describing Failures and Lifetimes of Water Mains.” Water Science and Technology 38 (6): 209–217. doi:10.1016/S0273-1223(98)00582-4.
  • Liaw, A., and M. Wiener. 2002. “Classification and Regression by RandomForest Andy.” The Newsletter of the R Project News 2: 18–22.
  • Loganathan, G. V., S. Park, and H. D. Sherali. 2002. “Threshold Break Rate for Pipeline Replacement in Water Distribution Systems.” Journal of Water Resources Planning and Management 128 (4): 271–279. doi:10.1061/(asce)0733-9496(2002)128:4(271).
  • Makar, J. M. 2000. “A Preliminary Analysis of Failures in Grey Cast Iron Water Pipes.” Engineering Failure Analysis 7 (1): 43–53. doi:10.1016/S1350-6307(99)00005-9.
  • McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. Florida, USA: Chapman and Hall/CRC.
  • McMullen, L. D. 1982. “Advanced concepts in soil evaluation for exterior pipeline corrosion.” In AWWA Annual Conference. Miami, USA.
  • Meyer, D., E. Dimiatriadou, K. Hornik, A. Weingessel, F. Leisch, C.-C. Chang, and C.-C. Lin. 2019. Package ‘E1071’. R Software package. https://cran.r-project.org/web/packages/e1071/e1071.pdf
  • Moglia, M., P. Davis, and S. Burn. 2008. “Strong Exploration of a Cast Iron Pipe Failure Model.” Reliability Engineering and System Safety 93 (6): 885–896. doi:10.1016/j.ress.2007.03.033.
  • Molnar, C. 2018. “Iml: An R Package for Interpretable Machine Learning.” Journal of Open Source Software 32 (26): 786. doi:10.21105/joss.00786.
  • Mordak, J., and J. Wheeler. 1988. Deterioration of Asbestos Cement Water Mains. Swindon, Wiltshire: WRc Engineering.
  • Morrison, S. 2018. “London ‘Could Face Mass Water Shortage by 2040 if Ancient Pipes are Not Replaced’” EveningStandard. https://www.standard.co.uk/news/london/london-could-face-mass-water-shortage-by-2040-if-ancient-pipes-are-not-replaced-a3786126.html
  • Ofwat. 2019. Final Determinations. Ofwat: Economic Regulator of the Water Sector in England and Wales.
  • Pecci, F., E. Abraham, and I. Stoianov. 2017. “Scalable Pareto Set Generation for Multiobjective Co-Design Problems in Water Distribution Networks: A Continuous Relaxation Approach.” Structural and Multidisciplinary Optimization 55 (3): 857–869. doi:10.1007/s00158-016-1537-8.
  • Pelletier, G., A. Mailhot, and J.-P. Villeneuve. 2003. “Modeling Water Pipe Breaks—Three Case Studies.” Journal of Water Resources Planning and Management 129 (2): 115–123. doi:10.1061/(asce)0733-9496(2003)129:2(115).
  • Poulton, M., and B. Bremond. 2007. “The Impact of Pipe Segment Length on Break Predictions in Water Distribution Systems.” 2nd Leading Edge Conference on Strategic Asset Management, 1–11. Lisbon, Portugal.
  • Qi, Z., F. Zheng, D. Guo, T. Zhang, Y. Shao, Y. Tingchao, K. Zhang, and H. R. Maier. 2018b. “A Comprehensive Framework to Evaluate Hydraulic and Water Quality Impacts of Pipe Breaks on Water Distribution Systems.” Water Resources Research 54 (10): 8174–8195. doi:10.1029/2018WR022736.
  • Qi, Z., F. Zheng, H. R. Danlu Guo, T. Z. Maier, Y. Tingchao, and Y. Shao. 2018a. “Better Understanding of the Capacity of Pressure Sensor Systems to Detect Pipe Burst within Water Distribution Networks.” Journal of Water Resources Planning and Management 144 (7): 1–11. doi:10.1061/(ASCE)WR.1943-5452.0000957.
  • Rajani, B., and Y. Kleiner. 2001. “Comprehensive Review of Structural Deterioration of Water Mains: Physically Based Models.” Urban Water 3 (3): 151–164. doi:10.1016/S1462-0758(01)00033-4.
  • Rezaei, H., B. Ryan, and I. Stoianov. 2015. “Pipe Failure Analysis and Impact of Dynamic Hydraulic Conditions in Water Supply Networks.” 13th Computer Control for Water Industry Conference, CCWI 2015, 119: 253–262. doi:10.1016/j.proeng.2015.08.883.
  • Røstum, J. 2000. “Statistical Modelling of Pipe Failures in Water Networks.” PhD Thesis.
  • Sadiq, R., B. Rajani, and Y. Kleiner. 2004. “Fuzzy-Based Method to Evaluate Soil Corrosivity for Prediction of Water Main Deterioration.” Journal of Infrastructure Systems 10 (4): 149–156. doi:10.1061/(asce)1076-0342(2004)10:4(149).
  • Scheidegger, A., J. P. Leitão, and L. Scholten. 2015. “Statistical Failure Models for Water Distribution Pipes - A Review from A Unified Perspective.” Water Research 83: 237–247. doi:10.1016/j.watres.2015.06.027.
  • Shamir, U., and C. Howard. 1979. “An Analytical Approach to Scheduling Pipe Replacement.” Journal-American Water Works Association 71 (5): 248–258. doi:10.1002/j.1551-8833.1979.tb04345.x.
  • St. Clair, A. M., and S. Sinha. 2012. “State-of-the-Technology Review on Water Pipe Condition, Deterioration and Failure Rate Prediction Models!” Urban Water Journal 9 (2): 85–112. doi:10.1080/1573062X.2011.644566.
  • Stoianov, I., L. Nachman, S. Madden, and T. Tokmouline. 2007. “PIPENETa Wireless Sensor Network for Pipeline Monitoring.” IPSN 2007: Proceedings of the Sixth International Symposium on Information Processing in Sensor Networks, 264–273. doi:10.1145/1236360.1236396.
  • Tsitsifli, S., V. Kanakoudis, Y. Bakouros, and P. Areos. 2006. “Pipe Reliability Assessment Using Discriminant Analysis and Classification : A Case Study from Mexico.” In Protection and Restoration of the Environment VIII, edited by E. Gidarakos, N. Nikolaidis, and C. Christodoulatos, 1–8. Chania, Crete. https://www.researchgate.net/publication/258983030_Pipe_reliability_assessment_using_discriminant_analysis_and_classification_a_case_study_from_Mexico
  • Vanrenterghem-Raven, A. 2007. “Risk Factors of Structural Degradation of an Urban Water Distribution System.” Journal of Infrastructure Systems 13 (1): 55–64. doi:10.1061/(ASCE)1076-0342(2007)13:1(55).
  • Venables, W. 2016. Package ‘Nnet’. R Software package. https://cran.r-project.org/web/packages/nnet/nnet.pdf
  • Walski, T. M., and A. Pelliccia. 1982. “Economic Analysis of Water Main Breaks.” Journal of American Water Works Association 74 (3): 140–147. doi:10.1002/j.1551-8833.1982.tb04874.x.
  • Winkler, D., M. Haltmeier, M. Kleidorfer, W. Rauch, and F. Tscheikner-gratl. 2018. “Pipe Failure Modelling for Water Distribution Networks Using Boosted Decision Trees.” Structure and Infrastructure Engineering 14 (10): 1402–1411. doi:10.1080/15732479.2018.1443145.
  • Wood, A., and B. J. Lence. 2009. “Using Water Main Break Data to Improve Asset Management for Small and Medium Utilities: District of Maple Ridge, B.C.” Journal of Infrastructure Systems 15 (2): 111–119. doi:10.1061/(ASCE)1076-0342(2009)15:2(111).
  • Wright, J. R. 2011. Spatial Decision Support for Estimating the Pipe-Break Vulnerabilities in Water Distribution Mains. MEng diss, Imperial College London
  • Yamijala, S., S. D. Guikema, and K. Brumbelow. 2009. “Statistical Models for the Analysis of Water Distribution System Pipe Break Data.” Reliability Engineering and System Safety 94 (2): 282–293. doi:10.1016/j.ress.2008.03.011.
  • Zeileis, A., C. Kleiber, and S. Jackman. 2015. “Regression Models for Count Data in R.” Journal of Statistical Software. doi:10.18637/jss.v027.i08.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.