189
Views
0
CrossRef citations to date
0
Altmetric
Research article

Deciphering and predict corrosion effect, influencing factors and microbial mechanism of sewer concrete corrosion based on extensive data analysis and machine learning

, , , &
Pages 1219-1230 | Received 19 Apr 2023, Accepted 24 Aug 2023, Published online: 06 Sep 2023

References

  • Abuhishmeh, K. S. 2019. “Service life prediction and risk analysis of reinforced concrete gravity flow pipes using reliability theory“. Master’s thesis, The University of Texas at Arlington.
  • Abuhishmeh, K., and H. H. Jalali. 2023. “Reliability Assessment of Reinforced Concrete Sewer Pipes Under Adverse Environmental Conditions: Case Study for the City of Arlington, Texas.” Journal of Pipeline Systems Engineering and Practice 14 (2): 05023001. https://doi.org/10.1061/JPSEA2.PSENG-1406.
  • Allahverdi, A., and F. J. C. S. Škvára. 2000. “Acidic Corrosion of Hydrated Cement Based Materials“, Ceram. Silikáty 44 (4): 152–160.
  • Bielefeldt, A., M. G. D. Gutierrez-Padilla, S. Ovtchinnikov, J. Silverstein, and M. Hernandez. 2010. “Bacterial Kinetics of Sulfur Oxidizing Bacteria and Their Biodeterioration Rates of Concrete Sewer Pipe Samples.” Journal of Environmental Engineering 136 (7): 731–738. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000215.
  • Cayford, B. I., P. G. Dennis, J. Keller, G. W. Tyson, and P. L. Bond. 2012. “High-Throughput Amplicon Sequencing Reveals Distinct Communities within a Corroding Concrete Sewer System.” Applied and Environmental Microbiology 78 (19): 7160–7162. https://doi.org/10.1128/AEM.01582-12.
  • Deng, Y., X. Zhou, J. Shen, G. Xiao, H. Hong, H. Lin, F. Wu, and B. Q. Liao. 2021. “New Methods Based on Back Propagation (Bp) and Radial Basis Function (Rbf) Artificial Neural Networks (Anns) for Predicting the Occurrence of Haloketones in Tap Water.” The Science of the Total Environment 772:145534. https://doi.org/10.1016/j.scitotenv.2021.145534.
  • Ebrahimi, M., H. Hojat Jalali, and S. Sabatino. 2023. “Probabilistic Condition Assessment of Reinforced Concrete Sanitary Sewer Pipelines Using Lidar Inspection Data.” Automation in Construction 150:104857. https://doi.org/10.1016/j.autcon.2023.104857.
  • Ebrahimi, M., and H. H. Jalali, 2022a. Automated Condition Assessment of Sanitary Sewer Pipes Using Lidar Inspection Data %j Pipelines 2022.
  • Ebrahimi, M., and H. H. Jalali, 2022b. Spatial Variability Effects of Wall Erosion on Assessment of Reinforced Concrete Sanitary Sewer Pipes (Rcssps) %j Tran-Set 2022.
  • Grengg, C., F. Mittermayr, G. Koraimann, F. Konrad, M. Szabó, A. Demeny, and M. Dietzel. 2017. “The Decisive Role of Acidophilic Bacteria in Concrete Sewer Networks: A New Model for Fast Progressing Microbial Concrete Corrosion.” Cement and Concrete Research 101:93–101. https://doi.org/10.1016/j.cemconres.2017.08.020.
  • Grengg, C., F. Mittermayr, N. Ukrainczyk, G. Koraimann, S. Kienesberger, and M. Dietzel. 2018. “Advances in Concrete Materials for Sewer Systems Affected by Microbial Induced Concrete Corrosion: A Review.” Water Research 134:341–352. https://doi.org/10.1016/j.watres.2018.01.043.
  • Gutberlet, T., H. Hilbig, and R. E. Beddoe. 2015. “Acid Attack on Hydrated Cement — Effect of Mineral Acids on the Degradation Process.” Cement and Concrete Research 74:35–43. https://doi.org/10.1016/j.cemconres.2015.03.011.
  • Ismail, N., T. Nonaka, S. Noda, and T. J. D. G. R. Mori. 1993. “Effect of Carbonation on Microbial Corrosion of Concretes.” Doboku Gakkai Ronbunshu 1993 (474): 133–138.
  • Jiang, G., J. Keller, and P. L. Bond. 2014. “Determining the Long-Term Effects of H(2)s Concentration, Relative Humidity and Air Temperature on Concrete Sewer Corrosion.” Water Research 65:157–169. https://doi.org/10.1016/j.watres.2014.07.026.
  • Jiang, G., J. Keller, P. L. Bond, and Z. Yuan. 2016. “Predicting Concrete Corrosion of Sewers Using Artificial Neural Network.” Water Research 92:52–60. https://doi.org/10.1016/j.watres.2016.01.029.
  • Jiang, G., Y. Liu, X. Li, and X. Sun. 2023. Mathematical Modelling for the Concrete Corrosion of Sewer Systems. Microbiologically Influenced Corrosion of Concrete Sewers: Mechanisms, Measurements, Modelling and Control Strategies, pp. 159–181. Springer International Publishing. https://doi.org/10.1007/978-3-031-29941-4_8.
  • Jiang, G., X. Sun, J. Keller, and P. L. Bond. 2015. “Identification of Controlling Factors for the Initiation of Corrosion of Fresh Concrete Sewers.” Water Research 80:30–40. https://doi.org/10.1016/j.watres.2015.04.015.
  • Jiang, G., X. Sun, J. Keller, and P. L. J. W. R. Bond. 2015. “Identification of Controlling Factors for the Initiation of Corrosion of Fresh Concrete Sewers.” Water Research 80:30–40. https://doi.org/10.1016/j.watres.2015.04.015.
  • Jiang, G., M. Zhou, T. H. Chiu, X. Sun, J. Keller, and P. L. Bond. 2016. “Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.” Environmental Science and Technology 50 (15): 8084–8092. Available from. https://www.ncbi.nlm.nih.gov/pubmed/27390870.
  • Joseph, A. P., J. Keller, H. Bustamante, and P. L. Bond. 2012. “Surface Neutralization and H(2)s Oxidation at Early Stages of Sewer Corrosion: Influence of Temperature, Relative Humidity and H(2)s Concentration.” Water Research 46 (13): 4235–4245. Available from. https://www.ncbi.nlm.nih.gov/pubmed/22677502.
  • Li, X. 2020. “Understanding and Controlling of Concrete Corrosion in Sewers.” PhD Thesis, School of Chemical Engineering, The University of Queensland.
  • Li, X., P. L. Bond, L. O’moore, S. Wilkie, L. Hanzic, I. Johnson, K. Mueller, Z. Yuan, and G. Jiang. 2020. “Increased Resistance of Nitrite-Admixed Concrete to Microbially Induced Corrosion in Real Sewers.” Environmental Science and Technology 54 (4): 2323–2333. Available from. https://www.ncbi.nlm.nih.gov/pubmed/31977201.
  • Li, X., I. Johnson, K. Mueller, S. Wilkie, L. Hanzic, P. L. Bond, L. O’moore, Z. Yuan, and G. Jiang. 2022. “Corrosion Mitigation by Nitrite Spray on Corroded Concrete in a Real Sewer System.” The Science of the Total Environment 806 (Pt 3): 151328. Available from. https://www.ncbi.nlm.nih.gov/pubmed/34743876.
  • Li, X., U. Kappler, G. Jiang, and P. L. Bond. 2017. “The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment.” Frontiers in Microbiology 8:683. https://doi.org/10.3389/fmicb.2017.00683.
  • Li, X., F. Khademi, Y. Liu, M. Akbari, C. Wang, P. L. Bond, J. Keller, and G. Jiang. 2019. “Evaluation of Data-Driven Models for Predicting the Service Life of Concrete Sewer Pipes Subjected to Corrosion.” Journal of Environmental Management 234:431–439. https://doi.org/10.1016/j.jenvman.2018.12.098.
  • Li, X., J. Kulandaivelu, L. O’moore, S. Wilkie, L. Hanzic, P. L. Bond, Z. Yuan, and G. Jiang. 2021. “Synergistic Effect on Concrete Corrosion Control in Sewer Environment Achieved by Applying Surface Washing on Calcium Nitrite Admixed Concrete.” Construction and Building Materials 302:124184. https://doi.org/10.1016/j.conbuildmat.2021.124184.
  • Li, X., L. O’moore, Y. Song, P. L. Bond, Z. Yuan, S. Wilkie, L. Hanzic, and G. Jiang. 2019. “The Rapid Chemically Induced Corrosion of Concrete Sewers at High h2s Concentration.” Water Research 162:95–104. https://doi.org/10.1016/j.watres.2019.06.062.
  • Liu, Y., Y. Song, J. Keller, P. Bond, and G. Jiang. 2017. “Prediction of Concrete Corrosion in Sewers with Hybrid Gaussian Processes Regression Model.” RSC Advances 7 (49): 30894–30903. https://doi.org/10.1039/C7RA03959J.
  • Lu, H., 2019. Accelerated simulation study on the corrosion of non-full flow concrete sewers (master’s thesis). master.
  • Madraszewski, S., F. Dehn, J. Gerlach, and D. Stephan. 2022. “Experimentally Driven Evaluation Methods of Concrete Sewers Biodeterioration on Laboratory-Scale: A Critical Review.” Construction and Building Materials 320:126236. https://doi.org/10.1016/j.conbuildmat.2021.126236.
  • Mori, T., M. Koga, Y. Hikosaka, T. Nonaka, F. Mishina, Y. Sakai, J. J. W. S. Koizumi, and Technology. 1991. “Microbial Corrosion of Concrete Sewer Pipes, h2s Production from Sediments and Determination of Corrosion Rate.” Water Science & Technology 23 (7–9): 1275–1282. https://doi.org/10.2166/wst.1991.0579.
  • Mori, T., T. Nonaka, K. Tazaki, M. Koga, Y. Hikosaka, and S. J. W. R. Noda. 1992. “Interactions of Nutrients, Moisture and Ph on Microbial Corrosion of Concrete Sewer Pipes.” Water Research 26 (1): 29–37. https://doi.org/10.1016/0043-1354(92)90107-F.
  • O’connell, M., C. Mcnally, and M. G. Richardson. 2010. “Biochemical Attack on Concrete in Wastewater Applications: A State of the Art Review.” Cement and Concrete Composites 32 (7): 479–485. https://doi.org/10.1016/j.cemconcomp.2010.05.001.
  • Okabe, S., M. Odagiri, T. Ito, and H. Satoh. 2007. “Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems.” Applied & Environmental Microbiology 73 (3): 971–980. Available from. https://www.ncbi.nlm.nih.gov/pubmed/17142362.
  • Pagaling, E., K. Yang, and T. Yan. 2014. “Pyrosequencing Reveals Correlations Between Extremely Acidophilic Bacterial Communities with Hydrogen Sulphide Concentrations, Ph and Inert Polymer Coatings at Concrete Sewer Crown Surfaces.” Journal of Applied Microbiology 117 (1): 50–64. Available from. https://www.ncbi.nlm.nih.gov/pubmed/24606006.
  • Satoh, H., M. Odagiri, T. Ito, and S. Okabe. 2009. “Microbial Community Structures and in situ Sulfate-Reducing and Sulfur-Oxidizing Activities in Biofilms Developed on Mortar Specimens in a Corroded Sewer System.” Water Research 43 (18): 4729–4739. Available from. https://www.ncbi.nlm.nih.gov/pubmed/19709714.
  • Song, Y., Y. Tian, X. Li, J. Wei, H. Zhang, P. L. Bond, Z. Yuan, and G. Jiang. 2019. “Distinct Microbially Induced Concrete Corrosion at the Tidal Region of Reinforced Concrete Sewers.” Water Research 150:392–402. https://doi.org/10.1016/j.watres.2018.11.083.
  • Sun, X., G. Jiang, P. L. Bond, and J. Keller. 2015. “Impact of Fluctuations in Gaseous h2s Concentrations on Sulfide Uptake by Sewer Concrete: The Effect of High h2s Loads.” Water Research 81:84–91. https://doi.org/10.1016/j.watres.2015.05.044.
  • Sun, X., G. Jiang, P. L. Bond, and J. Keller. 2019. “Periodic Deprivation of Gaseous Hydrogen Sulfide Affects the Activity of the Concrete Corrosion Layer in Sewers.” Water Research 157:463–471. https://doi.org/10.1016/j.watres.2019.03.074.
  • Sun, X., G. Jiang, P. L. Bond, T. Wells, and J. Keller. 2014. “A Rapid, Non-Destructive Methodology to Monitor Activity of Sulfide-Induced Corrosion of Concrete Based on h2s Uptake Rate.” Water Research 59:229–238. https://doi.org/10.1016/j.watres.2014.04.016.
  • Thiyagarajan, K., S. Kodagoda, R. Ranasinghe, D. Vitanage, and G. J. I. S. J. Iori. 2020. “Robust Sensor Suite Combined with Predictive Analytics Enabled Anomaly Detection Model for Smart Monitoring of Concrete Sewer Pipe Surface Moisture Conditions.” IEEE Sensors Journal 20 (15): 8232–8243. https://doi.org/10.1109/JSEN.2020.2982173.
  • Thiyagarajan, K., S. Kodagoda, R. Ranasinghe, D. Vitanage, and G. J. S. R. Iori. 2018. “Robust Sensing Suite for Measuring Temporal Dynamics of Surface Temperature in Sewers.” Scientific Reports 8 (1): 16020. https://doi.org/10.1038/s41598-018-34121-3.
  • Vollertsen, J., A. H. Nielsen, H. S. Jensen, T. Wium-Andersen, and T. Hvitved-Jacobsen. 2008. “Corrosion of Concrete Sewers–The Kinetics of Hydrogen Sulfide Oxidation.” The Science of the Total Environment 394 (1): 162–170. Available from. https://www.ncbi.nlm.nih.gov/pubmed/18281080.
  • Wang, Y., P. Li, H. Liu, W. Wang, Y. Guo, and L. Wang. 2022. “The Effect of Microbiologically Induced Concrete Corrosion in Sewer on the Bearing Capacity of Reinforced Concrete Pipes: Full-Scale Experimental Investigation.” Buildings 12 (11): 1996. https://doi.org/10.3390/buildings12111996.
  • Wang, Y., P. Li, L. J. J. O. T. Wang, and Evaluation. 2022. “The Testing Methods and Prediction Models for Concrete Corrosion in Sewer Pipelines: A State-Of-The-Art Review.” Journal of Testing and Evaluation 50 (5): 2791–2815. https://doi.org/10.1520/JTE20210702.
  • Wang, Y., F. Su, Y. Guo, H. Yang, Z. Ye, and L. Wang. 2022. “Predicting the Microbiologically Induced Concrete Corrosion in Sewer Based on Xgboost Algorithm.” Case Studies in Construction Materials 17:17. https://doi.org/10.1016/j.cscm.2022.e01649.
  • Wang, Y., F. Su, P. Li, W. Wang, H. Yang, and L. Wang. 2023. “Microbiologically Induced Concrete Corrosion in the Cracked Sewer Pipe Under Sustained Load.” Construction and Building Materials 369:130521. https://doi.org/10.1016/j.conbuildmat.2023.130521.
  • Wells, T., and R. Melchers. Year. Findings of a 4 Year Study of Concrete Sewer Pipe Corrosion.^eds. Annual Conference of the Australasian Corrosion AssociationAustralasian Corrosion Association Preston, Victoria, Australia, 1–12.
  • Wells, T., and R. E. Melchers. 2014. “An Observation-Based Model for Corrosion of Concrete Sewers Under Aggressive Conditions.” Cement and Concrete Research 61-62:1–10. https://doi.org/10.1016/j.cemconres.2014.03.013.
  • Wells, T., and R. J. P. O. T. O. Melchers. 2016. “Concrete Sewer Pipe Corrosion—Findings from an Australia Field Study.”
  • Wu, M., T. Wang, K. Wu, and L. Kan. 2020. “Microbiologically Induced Corrosion of Concrete in Sewer Structures: A Review of the Mechanisms and Phenomena.” Construction and Building Materials 239:117813. https://doi.org/10.1016/j.conbuildmat.2019.117813.
  • Yousuf, M. U., I. Al-Bahadly, and E. Avci. 2021. “A Modified Gm(1,1) Model to Accurately Predict Wind Speed.” Sustainable Energy Technologies and Assessments 43:100905. Available from https://www.sciencedirect.com/science/article/pii/S2213138820313321. https://doi.org/10.1016/j.seta.2020.100905.
  • Yuan, H., P. Dangla, P. Chatellier, and T. Chaussadent. 2015. “Degradation Modeling of Concrete Submitted to Biogenic Acid Attack.” Cement and Concrete Research 70:29–38. https://doi.org/10.1016/j.cemconres.2015.01.002.
  • Zounemat-Kermani, M., D. Stephan, M. Barjenbruch, and R. Hinkelmann. 2020. “Ensemble Data Mining Modeling in Corrosion of Concrete Sewer: A Comparative Study of Network-Based (MLPNN & RBFNN) and Tree-Based (RF, CHAID, & CART) Models.” Advanced Engineering Informatics 43:101030. https://doi.org/10.1016/j.aei.2019.101030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.