541
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of the suitability of degradation models for the planning of CCTV inspections of sewer pipes

, &
Pages 190-203 | Received 23 Mar 2023, Accepted 26 Oct 2023, Published online: 20 Nov 2023

References

  • Ana, E., W. Bauwens, M. Pessemier, C. Thoeye, S. Smolders, I. Boonen, and G. De Gueldre. 2009. “An Investigation of the Factors Influencing Sewer Structural Deterioration.” Urban Water Journal 6 (4): 303–312. https://doi.org/10.1080/15730620902810902.
  • Archer, K., and R. Kimes. 2008. “Empirical characterization of random forest variable importance measures.” Computational Statistics I& Data Analysis 52 (4): 2249–2260. https://doi.org/10.1016/j.csda.2007.08.015.
  • Arthur, S., H. Crow, L. Pedezert, and N. Karikas. 2009. “The Holistic Prioritisation of Proactive Sewer Maintenance.” Water Science and Technology 59 (7): 1385–1396. https://doi.org/10.2166/WST.2009.134.
  • Baah, K., B. Dubey, R. Harvey, and E. McBean. 2015. “A Risk-Based Approach to Sanitary Sewer Pipe Asset Management.” Science of the Total Environment 505:1011–1017. https://doi.org/10.1016/j.scitotenv.2014.10.040.
  • Bakry, I., H. Alzraiee, M. E. Masry, K. Kaddoura, and T. Zayed. 2016. “Condition Prediction for Cured-In-Place Pipe Rehabilitation of Sewer Mains.” Journal of Performance of Constructed Facilities 30 (5): 04016016. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000866.
  • Balekelayi, N., and S. Tesfamariam. 2019. “Statistical Inference of Sewer Pipe Deterioration Using Bayesian Geoadditive Regression Model.” Journal of Infrastructure Systems 25 (3): 04019021. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000500.
  • Baur, R., and R. Herz. 2002. “Selective Inspection Planning with Ageing Forecast for Sewer Types.” Water Science and Technology 46 (6–7): 389–396. https://doi.org/10.2166/wst.2002.0704.
  • Biau, G., and E. Scornet. 2016. “A Random Forest Guided Tour.” Test 25 (2): 197–227. https://doi.org/10.1007/s11749-016-0481-7.
  • Bishop, P. K., B. D. Misstear, M. White, and N. J. Harding. 1998. “Impacts of Sewers on Groundwater Quality.” Water and Environment Journal 12 (3): 216–223. https://doi.org/10.1111/j.1747-6593.1998.tb00176.x.
  • Boser, B. E., I. M. Guyon, and V. N. Vapnik 1992. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, pages 144–152. https://doi.org/10.1145/130385.130401.
  • Bouvard, K., S. Artus, C. Berenguer, and V. Cocquempot. 2011. “Condition-Based Dynamic Maintenance Operations Planning & Grouping. Application to Commercial Heavy Vehicles.” Reliability Engineering and System Safety 96 (6): 601–610. https://doi.org/10.1016/j.ress.2010.11.009.
  • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
  • Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 2017. Classification and Regression Trees. Routledge. https://doi.org/10.1201/9781315139470.
  • Caradot, N., M. Riechel, M. Fesneau, N. Hernandez, A. Torres, H. Sonnenberg, E. Eckert, N. Lengemann, J. Waschnewski, and P. Rouault. 2018. “Practical Benchmarking of Statistical and Machine Learning Models for Predicting the Condition of Sewer Pipes in Berlin, Germany.” Journal of Hydroinformatics 20 (5): 1131–1147. https://doi.org/10.2166/hydro.2018.217.
  • Carvalho, D. V., E. M. Pereira, and J. S. Cardoso. 2019. “Machine Learning Interpretability: A Survey on Methods and Metrics.” Electronics 8 (8): 832. https://doi.org/10.3390/electronics8080832.
  • Chen, T., and C. Guestrin 2016. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794. https://doi.org/10.48550/arXiv.1603.02754.
  • Cremer, F., H.-G. Van Deel, J. Lehne, and K. Scholz. 2002. “Wastewater engineering guidelines- planning, construction, and operation of wastewater systems on real estate owned by the federal government[arbeitshilfen abwasser- planung, bau und betrieb von abwassertechnischen anlagen in liegenschaften des bundes].” KA- Wasserwirtschaft, Abwasser, Abfall 49 (8): 1070–1077.
  • Davies, J., B. Clarke, J. Whiter, and R. Cunningham. 2001. “Factors Influencing the Structural Deterioration and Collapse of Rigid Sewer Pipes.” Urban Water 3 (1): 73–89. https://doi.org/10.1016/S1462-0758(01)00017-6.
  • DeMaris, A. 1995. “A Tutorial in Logistic Regression.” Journal of Marriage and the Family 57 (4): 956–968. https://doi.org/10.2307/353415.
  • Deutsches Institut für Normung (DIN). 2011. Untersuchung und Beurteilung von Entwässerungssystemen außerhalb von Gebäuden - Teil 2: Kodiersystem für die optische Inspektion (DIN EN 13508-2:2011-08). https://www.beuth.de/de/norm/din-en-13508-2/136106286.
  • Deutsches Institut für Normung (DIN). 2013. Untersuchung und Beurteilung von Entwässerungssystemen außerhalb von Gebäuden - Teil 1: Allgemeine Anforderungen (DIN EN 13508-1:2013-01). https://www.beuth.de/de/norm/din-en-13508-1/152156626.
  • Deutsche Vereinigung für Wasserwirtschaft (DWA). 1999. “Inspektion, instandsetzung, sanierung und erneuerung von abwasserkanälen und leitungen–teil 2: Optische inspektion (ATVM143-2:1999).”
  • Dong, S., H. Wang, A. Mostafizi, and X. Song. 2020. “A Network-Of-Networks Percolation Analysis of Cascading Failures in Spatially Co-Located Road-Sewer Infrastructure Networks.” Physica A: Statistical Mechanics and Its Applications 538:122971. https://doi.org/10.1016/j.physa.2019.122971.
  • Fenner, R. A. 2000. “Approaches to Sewer Maintenance: A Review.” Urban Water 2 (4): 343–356. https://doi.org/10.1016/S1462-0758(00)00065-0.
  • Fontecha, J. E., P. Agarwal, M. N. Torres, S. Mukherjee, J. L. Walteros, and J. P. Rodríguez. 2021. “A Two-Stage Data-Driven Spatiotemporal Analysis to Predict Failure Risk of Urban Sewer Systems Leveraging Machine Learning Algorithms.” Risk Analysis 41 (12): 2356–2391. https://doi.org/10.1111/risa.13742.
  • Friedman, J. H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” Annals of Statistics 29 (5): 1189–1232. https://doi.org/10.1214/aos/1013203451.
  • Guidotti, R., A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. 2018. “A Survey of Methods for Explaining Black Box Models.” ACM Computing Surveys (CSUR) 51 (5): 1–42. https://doi.org/10.1145/3236009.
  • Hansen, B. D., S. H. Rasmussen, T. B. Moeslund, M. Uggerby, and D. G. Jensen. 2020. “Sewer Deterioration Modeling: The Effect of Training a Random Forest Model on Logically Selected Data-Groups.” Procedia Computer Science 176:291–299. https://doi.org/10.1016/j.procs.2020.08.031.
  • Harvey, R. R., and E. A. McBean. 2014. “Predicting the Structural Condition of Individual Sanitary Sewer Pipes with Random Forests.” Canadian Journal of Civil Engineering 41 (4): 294–303. https://doi.org/10.1139/cjce-2013-0431.
  • Jain, A. K., J. Mao, and K. M. Mohiuddin. 1996. “Artificial neural networks: A tutorial.” Computer 29 (3): 31–44. https://doi.org/10.1109/2.485891.
  • Kabir, G., N. B. C. Balek, and S. Tesfamariam. 2018. “Sewer Structural Condition Prediction Integrating Bayesian Model Averaging with Logistic Regression.” Journal of Performance of Constructed Facilities 32 (3): 04018019. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001162.
  • Khan, Z., T. Zayed, and O. Moselhi. 2010. “Structural Condition Assessment of Sewer Pipelines.” Journal of Performance of Constructed Facilities 24 (2): 170–179. https://doi.org/10.1061/(asce)cf.1943-5509.0000081.
  • Kingsford, C., and S. L. Salzberg. 2008. “What are Decision Trees?” Nature Biotechnology 26 (9): 1011–1013. https://doi.org/10.1038/nbt0908-1011.
  • Kotsiantis, S. B. 2013. “Decision Trees: A Recent Overview.” Artificial Intelligence Review 39 (4): 261–283. https://doi.org/10.1007/s10462-011-9272-4.
  • Krogh, A. 2008. “What are Artificial Neural Networks?” Nature Biotechnology 26 (2): 195–197. https://doi.org/10.1038/nbt1386.
  • Kuliczkowska, E. 2016. “The Interaction Between Road Traffic Safety and the Condition of Sewers Laid Under Roads.” Transportation Research, Part D: Transport & Environment 48:203–213. https://doi.org/10.1016/j.trd.2016.08.025.
  • Laakso, T., T. Kokkonen, I. Mellin, and R. Vahala. 2019. “Sewer Life Span Prediction: Comparison of Methods and Assessment of the Sample Impact on the Results.” Water 11 (12): 1–14. https://doi.org/10.3390/W11122657.
  • Lee, J., C. Y. Park, S. Baek, S. H. Han, and S. Yun. 2021. “Risk-Based Prioritization of Sewer Pipe Inspection from Infrastructure Asset Management Perspective.” Sustainability 13 (13). https://doi.org/10.3390/su13137213.
  • Lever, J. 2016. “Classification Evaluation: It is Important to Understand Both What a Classification Metric Expresses and What It Hides.” Nature Methods 13 (8): 603–605. https://doi.org/10.1038/nmeth.3945.
  • Malek Mohammadi, M., M. Najafi, S. Kermanshachi, V. Kaushal, and R. Serajiantehrani. 2020. “Factors Influencing the Condition of Sewer Pipes: State-Of-The-Art Review.” Journal of Pipeline Systems Engineering and Practice 11 (4): 03120002. https://doi.org/10.1061/(asce)ps.1949-1204.0000483.
  • Mammone, A., M. Turchi, and N. Cristianini. 2009. “Support Vector Machines.” Wiley Interdisciplinary Reviews: Computational Statistics 1 (3): 283–289. https://doi.org/10.1002/wics.49.
  • Mashford, J., D. Marlow, D. H. Tran, and R. May. 2011. “Prediction of Sewer Condition Grade Using Support Vector Machines.” Journal of Computing in Civil Engineering 25 (4): 283–290. https://doi.org/10.1061/(asce)cp.1943-5487.0000089.
  • Mohammadi, M. M., M. Najafi, N. Salehabadi, R. Serajiantehrani, and V. Kaushal. 2020. Predicting Condition of Sanitary Sewer Pipes with Gradient Boosting Treepp. 80–89. American Society of Civil Engineers. https://doi.org/10.1061/9780784483206.010.
  • Natekin, A., and A. Knoll. 2013. “Gradient Boosting Machines, a Tutorial.” Frontiers in Neurorobotics 7:21. https://doi.org/10.3389/fnbot.2013.00021.
  • Noble, W. S. 2006. “What is a Support Vector Machine?” Nature Biotechnology 24 (12): 1565–1567. https://doi.org/10.1038/nbt1206-1565.
  • Owolabi, T. A., S. R. Mohandes, and T. Zayed. 2022. “Investigating the Impact of Sewer Overflow on the Environment: A Comprehensive Literature Review Paper.” Journal of Environmental Management 301:113810. https://doi.org/10.1016/J.JENVMAN.2021.113810.
  • Prakash, G., X.-X. Yuan, B. Hazra, and D. Mizutani. 2021. “Toward a Big Data-Based Approach: A Review on Degradation Models for Prognosis of Critical Infrastructure.” Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems 4 (2). https://doi.org/10.1115/1.4048787.
  • Rathnayake, U., and A. Faisal Anwar. 2019. “Dynamic Control of Urban Sewer Systems to Reduce Combined Sewer Overflows and Their Adverse Impacts.” Canadian Journal of Fisheries and Aquatic Sciences 579:124150. https://doi.org/10.1016/j.jhydrol.2019.124150.
  • Ribeiro, M. T., S. Singh, and C. Guestrin 2016. “Why Should I Trust you?” Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1135–1144. https://doi.org/10.48550/arXiv.1602.04938.
  • Robles-Velasco, A., P. Cortés, J. Muñuzuri, and L. Onieva. 2021. “Estimation of a Logistic Regression Model by a Genetic Algorithm to Predict Pipe Failures in Sewer Networks.” OR Spectrum 43 (3): 759–776. https://doi.org/10.1007/s00291-020-00614-9.
  • Rudin, C. 2019. “Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.” Nature Machine Intelligence 1 (5): 206–215. https://doi.org/10.48550/arXiv.1811.10154.
  • Sægrov, S., J. F. Melo Baptista, P. Conroy, R. K. Herz, P. Legauffre, G. Moss, J. E. Oddevald, B. Rajani, and M. Schiatti. 1999. “Rehabilitation of Water Networks: Survey of Research Needs and On-Going Efforts.” Urban Water 1 (1): 15–22. https://doi.org/10.1016/S1462-0758(99)00002-3.
  • Salihu, C., M. Hussein, S. R. Mohandes, and T. Zayed. 2022. “Towards a Comprehensive Review of the Deterioration Factors and Modeling for Sewer Pipelines: A Hybrid of Bibliometric, Scientometric, and Meta-Analysis Approach.” Journal of Cleaner Production 131460. https://doi.org/10.1016/j.jclepro.2022.131460.
  • Salman, B., and O. Salem. 2012. “Modeling Failure of Wastewater Collection Lines Using Various Section-Level Regression Models.” Journal of Infrastructure Systems 18 (2): 146–154. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000075.
  • Sousa, V., J. P. Matos, and N. Matias. 2014. “Evaluation of Artificial Intelligence Tool Performance and Uncertainty for Predicting Sewer Structural Condition.” Automation in Construction 44:84–91. https://doi.org/10.1016/J.AUTCON.2014.04.004.
  • Sousa, V., J. P. Matos, N. Matias, and I. Meireles. 2019. “Statistical Comparison of the Performance of Data-Based Models for Sewer Condition Modeling.” Structure and Infrastructure Engineering 15 (12): 1680–1693. https://doi.org/10.1080/15732479.2019.1648525.
  • Swanson, L. 2001. “Linking Maintenance Strategies to Performance.” International Journal of Production Economics 70 (3): 237–244. https://doi.org/10.1016/S0925-5273(00)00067-0.
  • Szumilas, M. 2010. “Explaining Odds Ratios.” Journal of the Canadian Academy of Child and Adolescent Psychiatry 19 (3): 227.
  • Tatem, A. J. 2017. “Worldpop, Open Data for Spatial Demography.” Scientific Data 4 (1): 1–4. https://doi.org/10.1038/sdata.2017.4.
  • Tran, D. H., A. W. Ng, B. J. Perera, S. Burn, and P. Davis. 2006. “Application of Probabilistic Neural Networks in Modelling Structural Deterioration of Stormwater Pipes.” Urban Water Journal 3 (3): 175–184. https://doi.org/10.1080/15730620600961684.
  • Vladeanu, G. J., and J. C. Matthews. 2019. “Consequence-Of-Failure Model for Risk-Based Asset Management of Wastewater Pipes Using AHP.” Journal of Pipeline Systems Engineering and Practice 10 (2): 04019005. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000370.
  • Wolf, L., I. Held, M. Eiswirth, and H. Hötzl. 2004. “Impact of Leaky Sewers on Groundwater Quality.” Acta Hydrochimica et Hydrobiologica 32 (4–5): 361–373. https://doi.org/10.1002/AHEH.200400538.
  • Xianfei, Y., Y. Chen, A. Bouferguene, and M. Al-Hussein. 2020. “Data-driven bi-level sewer pipe deterioration model: Design and analysis.” Automation in Construction 116:116. https://doi.org/10.1016/j.autcon.2020.103181.
  • Xianfei, Y., Y. Chen, A. Bouferguene, M. Al-Hussein, R. Russell, and L. Kurach. 2020. “A Neural Network-Based Approach to Predict the Condition for Sewer Pipes.” Construction Research Congress 7:809–818. https://doi.org/10.1061/9780784482858.017.