Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 11, 2015 - Issue 10
425
Views
8
CrossRef citations to date
0
Altmetric
Articles

Limit state design approach for the safety evaluation of the foundations of concrete gravity dams

, &
Pages 1306-1322 | Received 29 Jan 2014, Accepted 12 Jul 2014, Published online: 03 Oct 2014

References

  • Alonso, E., Carol, I., Delahaye, C., Gens, A., & Prat, P. (1996). Evaluation of safety factors in discontinuous rock. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 33, 513–537.
  • Asadollahi, P., & Tonon, F. (2010). Definition of factor of safety for rock blocks. International Journal of Rock Mechanics and Mining Sciences, 47, 1384–1390.
  • Australian National Committee on Large Dams (ANCOLD). (2013). Guidelines on design criteria for concrete gravity dams (September 2013). Australia: Author.
  • Barla, G., Bonini, M., & Cammarata, G. (2004). Stress and seepage analyses for a gravity dam on a jointed granitic rock mass. In Proceedings of the 1st International UDEC/3DEC Symposium, Bochum, 29 September–1 October 2004 (pp. 263–268). Rotterdam: A.A. Balkema.
  • Barton, N., Bandis, S., & Bakhtar, K. (1985). Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 22, 121–140.
  • Bernstone, C., Westberg, M., & Jeppsson, J. (2009). Structural assessment of a concrete dam based on uplift pressure monitoring. Journal of Geotechnical and Geoenvironmental Engineering, 135, 133–142.
  • Caldeira, L., Farinha, M.L.B., Maranha das Neves, E., & Lemos, J.V. (2013). Limit state design of the foundations of concrete gravity dams – A case study. In P. Arnold, G.A. Fenton, M.A. Hicks, T. Schweckendiek, & B. Simpson (Eds.), Modern geotechnical design codes of practice – Implementation, application and development (pp. 143–156). Amsterdam: IOS Press BV.
  • CEN (2002a). Eurocode 1: Actions on structures – Part 1-1: General actions – Densities, self-weigth, imposed loads for buildings. EN 1991-1-1.
  • CEN (2002b). Eurocode 0: Basis of structural design. EN 1990.
  • CEN (2004). Eurocode 7: Geotechnical design – Part 1: General rules. EN 1997-1.
  • CEN (2005). Eurocode 8: Design of structures for earthquakes resistance. EN 1998.
  • CEN (2006). Eurocode 1: Actions on structures – Part 1-7: General actions – Accidental actions. EN 1991-1-7.
  • CEN (2007). Eurocode 7: Geotechnical design – Part 2: Ground investigation and testing. EN 1997-2.
  • CFBR (2006). Recommandations pour la justification de la stabilité des barrages-poids [Guidelines for the justification of the stability of gravity dams]. Groupe de Travail “Calcul des barrages-poids”. Comité Français des Barrages et Réservoirs.
  • CFBR (2010). Recommandations pour la justification de la stabilité des barrages et des digues en remblai [Guidelines for the justification of the stability of embankment dams]. Goup de Travaiul “Justification des Barrages et des digues en Remblai”. Comité Français des Barrages et Réservoirs.
  • CFBR (2012). Recommandations pour la justification de la stabilité des barrages-poids [Guidelines for the justification of the stability of gravity dams, published in November 2013]. Ad-hoc working group. Comité Français des Barrages et Réservoirs.
  • Deroo, L., & Boris, J. (2011). Notes sur l'accidentologie des barrages-poids [Notes on gravity dams accidentology]. In Proceedings of the colloque CFBR-AFEID: Etudes de dangers, Lyon, France, 28–20 November 2011 (pp. 1–18). Comité Français des Barrages et Réservoirs.
  • EDP (2004). Aproveitamento hidroeléctrico de fins múltiplos de Alqueva. Escalão de Pedrógão. Cartografia geológica-geotécnica das superfícies escavadas [Multi-purpose Alqueva Hydroelectric Scheme. Pedrogão gravity dam. Geological and geotechnical mapping of excavated surfaces]. Technical report, Porto, Portugal (in Portuguese).
  • European Club of ICOLD (2004a). Sliding safety of existing gravity dams – Final report. Report of the European Working Group.
  • European Club of ICOLD (2004b). Uplift pressures under concrete dams – Final report. Report of the European Working Group.
  • Farinha, M.L.B. (2010). Hydromechanical behaviour of concrete dam foundations – In situ tests and numerical modelling  (Ph.D. thesis. Technical University of Lisbon, Lisbon, Portugal).
  • FERC (2002). Engineering guidelines for the evaluation of hydropower projects. Chapter 3 – Gravity dams.
  • Frank, R., Bauduin, C., Driscoll, R., Kavvadas, M., Krebs Ovesen, N., Orr, T., & Schuppener, B. (2004). Designer's guide to EN 1997-1 Eurocode 7: Geotechnical design – General rules. London: Thomas Telford Ltd.
  • Gimenes, E.Á., & Fernández, G. (2006). Hydromechanical analysis of flow behaviour in concrete gravity dam foundations. Canadian Geotechnical Journal, 43, 244–259.
  • Gulvanessian, H., Calgaro, J.-A., & Holichy, M. (2002). Designer's guide to EN 1990. Eurocode: Basis of structural design. London: Telford Ltd.
  • International Commission on Large Dams (1988). Dam design criteria. The philosophy of their selection. Bulletin 61. Paris: Author.
  • International Commission on Large Dams (1993). Rock foundations for dams. Bulletin 88. Paris: Author.
  • International Commission on Large Dams (1995). Dam failures. Statistical analysis. Paris: Author.
  • Itasca (2004). UDEC – Universal distinct element code, Version 4.0, User's Manual. Minneapolis, MN: Itasca Consulting Group.
  • Kovari, K., & Fritz, P. (1989). Re-evaluation of the sliding stability of concrete structures on rock with emphasis on European experience (Technical report REMR-GT-12). London: U.S. Army Research Development and Standardization Group.
  • Kovari, K., & Fritz, P. (1993). Reevaluation of the stability of large concrete structures on rock. In J.A. Hudson (Ed.), Reevaluation of the stability of large concrete structures on rock (Vol. 5, pp. 653–700). Oxford: Pergamon Press.
  • Lemos, J.V. (1999). Discrete element analysis of dam foundations. In V.M. Sharma, K.R. Saxena, & R.D. Woods (Eds.), Distinct element modelling in geomechanics (pp. 89–115). Rotterdam: Balkema.
  • Lemos, J.V. (2008). Block modelling of rock masses. Concepts and application to dam foundations. European Journal of Environmental and Civil Engineering, 12, 915–949.
  • LNEC (2004). Geomechanical characterization tests of the foundation rock mass of the Pedrógão dam (Report 44/04-NFOS). Lisbon: LNEC  (in Portuguese).
  • Londe, P. (1973). The role of rock mechanics in the reconnaissance of rock foundations. The Quarterly Journal of Engineering Geology, 6, 56–74.
  • Lupoi, A., & Callari, C. (2012). A probabilistic method for the seismic assessment of existing concrete gravity dams. Structure and Infrastructure Engineering, 8, 985–998.
  • Miranda, M.P., & Maia, M.C. (2004). Main features of the Alqueva and Pedrógão Projects. The International Journal on Hydropower and Dams, 11, 95–99.
  • Mostyn, G., Helgstedt, M.D., & Douglas, K.J. (1997). Towards field bounds on rock mass failure criteria. International Journal of Rock Mechanics and Mining Sciences, 34, 208.e201–208.e218.
  • Noorishad, J., Ayatollahi, M.S., & Witherspoon, P.A. (1982). A finite-element method for coupled stress and fluid flow analysis in fractured masses. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 19, 185–193.
  • NPB (1993). Normas de projecto de barragens [Portuguese guidelines for dam design]. Portaria 846/1993 de 10 de Setembro. Diário da República, Lisbon, Portugal (in Portuguese).
  • Orr, L.L. (2012). How Eurocode 7 has affected geotechnical design: A review. Geotechnical Engineering. Proceedings of the Institution of Civil Engineers, 165, 337–350.
  • Peyras, L., Royet, P., Deroo, L., Albert, R., Becue, J.-P., Aigouy, S., Bourdarot, E., Loudiere, D., & Kovarik, J.-B. (2008). French recommendations for limit-state analytical review of gravity dam stability. European Journal of Environmental and Civil Engineering, 12, 1137–1164.
  • Rocha, M. (1978). Analysis and design of the foundations of concrete dams. General report, theme III. In Proceedings of the International Symposium on Rock Mechanics Related to Dam Foundations, Rio de Janeiro, Brasil, 27–29 September 1978 (Vol. 2, pp. III.11-III.70). Rio de Janeiro: Gráfica Editora.
  • Royet, P., & Peyras, L. (2013). French guidelines for structural safety of gravity dams in a semi-probabilistic format. In Proceddings of the 9th ICOLD European Club Symposium, Venice, Italy, 10–12 April 2013 (pp. 1-8). European Club of ICOLD.
  • Schneider, H.R. (1999). Determination of characteristics soil properties. In Proceedings of the 12th European Conference on Soil Mechanics and Foundation Engineering (Vol. 1, pp. 273–281). Rotherdam: A.A. Balkema.
  • USACE (1983). Design of gravity dams on rock foundations: Sliding stability assessment by limit equilibrium and selection of shear strength parameters (Technical report GL-83-13). Washington, DC: Author.
  • USACE (1994). Engineering and design. Rock foundations (Engineer Manual 1110-1-2908). Washington, DC: Author.
  • USACE (2000). Evaluation and comparison of stability analysis and uplift criteria for concrete gravity dams by three Federal Agencies (ERDC/ITL TR-00-1). Washington, DC: Author.
  • USACE (2005). Stability analysis of concrete structures (Engineer Manual 1110-2-2100). Washington, DC: Author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.